Spaces:
Running
Running
File size: 2,254 Bytes
26ca9d4 9423469 4ef74d7 26ca9d4 4ef74d7 26ca9d4 628c773 26ca9d4 9423469 26ca9d4 9423469 73a2adf 628c773 26ca9d4 628c773 16b6e74 26ca9d4 628c773 73a2adf 628c773 26ca9d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# app.py
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import gradio as gr
import torch
# load model and tokenizer
model_name = "inclusionAI/Ling-lite-1.5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True
).eval()
# define chat function
def chat(user_input, max_new_tokens=512):
# chat history
messages = [
{"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
{"role": "user", "content": user_input}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# encode the input prompt
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
#create streamer
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
def generate():
model.generate(**inputs, max_new_tokens=max_new_tokens, streamer=streamer)
thread = Thread(target=generate)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
yield generated_text
thread.join()
# generate response
#with torch.no_grad():
# outputs = model.generate(
# **inputs,
# max_new_tokens=max_new_tokens,
# pad_token_id=tokenizer.eos_token_id
# )
#response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[-1]:], skip_special_tokens=True)
#return response
# Construct Gradio Interface
interface = gr.Interface(
fn=chat,
inputs=[
gr.Textbox(lines=5, label="输入你的问题"),
gr.Slider(minimum=100, maximum=1024, step=50, label="生成长度")
],
outputs=gr.Textbox(label="模型回复"),
title="Ling-lite-1.5 MoE 模型 Demo",
description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) 的对话式文本生成演示。",
examples=[
["介绍大型语言模型的基本概念", 512],
["如何解决数学问题中的长上下文依赖?", 768]
]
)
# launch Gradion Service
interface.launch()
|