File size: 3,239 Bytes
26ca9d4
9423469
 
4ef74d7
2493f19
4ef74d7
 
26ca9d4
4ef74d7
 
 
 
 
0b90a57
628c773
 
 
26ca9d4
9f21eff
26ca9d4
 
 
 
 
 
 
 
 
9423469
 
 
 
 
 
 
 
 
 
fa749bc
9423469
 
 
d287896
9423469
 
73a2adf
9f21eff
77b7aca
 
 
 
 
 
 
 
9f21eff
cb6cb3b
 
9f21eff
 
 
2ba773c
9f21eff
cb6cb3b
77b7aca
cb6cb3b
9f21eff
 
 
cb6cb3b
 
9f21eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
628c773
9f21eff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73a2adf
628c773
9f21eff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# app.py
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import gradio as gr
import re
import torch

# load model and tokenizer
model_name = "inclusionAI/Ling-lite-1.5"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto",
    trust_remote_code=True
).eval()

# define chat function
def chat(user_input, max_new_tokens=2048):
    # chat history
    messages = [
        {"role": "system", "content": "You are Ling, an assistant created by inclusionAI"},
        {"role": "user", "content": user_input}
    ]
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    
    # encode the input prompt
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

    #create streamer
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)

    def generate():
        model.generate(**inputs, max_new_tokens=max_new_tokens, streamer=streamer)

    thread = Thread(target=generate)
    thread.start()

    start_idx = len("SYSTEM") + len(messages[0]["content"]) + len("HUMAN") + len(user_input) + len("ASSISTANT")
    generated_text = ""
    for new_text in streamer:
        generated_text += new_text
        yield generated_text[start_idx:]

    thread.join()

# Create a custom layout using Blocks
with gr.Blocks(css="""
    #markdown-output {
        height: 300px;
        overflow-y: auto;
        border: 1px solid #ddd;
        padding: 10px;
    }
""") as demo:
    gr.Markdown(
        "## Ling-lite-1.5 AI Assistant\n"
        "Based on [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5) "
    )

    with gr.Row():
        max_tokens_slider = gr.Slider(minimum=128, maximum=2048, step=16, label="Generated length")

#    output_box = gr.Textbox(lines=10, label="Response")
    output_box = gr.Markdown(label="Response", elem_id="markdown-output")
    input_box = gr.Textbox(lines=8, label="Input you question")

    examples = gr.Examples(
        examples=[
            ["Introducing the basic concepts of large language models"],
            ["How to solve long context dependencies in math problems?"]
        ],
        inputs=input_box
    )

    interface = gr.Interface(
        fn=chat,
        inputs=[input_box, max_tokens_slider],
        outputs=output_box,
        live=False  # disable auto-triggering on input change
    )

# launch Gradio Service
demo.queue()
demo.launch()

# Construct Gradio Interface
#interface = gr.Interface(
#    fn=chat,
#    inputs=[
#        gr.Textbox(lines=8, label="输入你的问题"),
#        gr.Slider(minimum=100, maximum=102400, step=50, label="生成长度")
#    ],
#    outputs=[
#        gr.Textbox(lines=8, label="模型回复")
#    ],
#    title="Ling-lite-1.5 AI助手",
#    description="基于 [inclusionAI/Ling-lite-1.5](https://huggingface.co/inclusionAI/Ling-lite-1.5)  的对话式文本生成演示。",
#    examples=[
#        ["介绍大型语言模型的基本概念"],
#        ["如何解决数学问题中的长上下文依赖?"]
#    ]
#)

# launch Gradion Service
#interface.launch()