insideman commited on
Commit
9b9d71a
·
verified ·
1 Parent(s): 3ae25e3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -34
app.py CHANGED
@@ -8,7 +8,8 @@ from PIL import Image
8
  from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection
9
  import os
10
 
11
- os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
 
12
 
13
  # colors for visualization
14
  COLORS = [
@@ -33,11 +34,12 @@ def fig2img(fig):
33
  buf.seek(0)
34
  pil_img = Image.open(buf)
35
  basewidth = 750
36
- wpercent = (basewidth / float(pil_img.size[0]))
37
- hsize = int((float(pil_img.size[1]) * float(wpercent)))
38
- img = pil_img.resize((basewidth, hsize), Image.Resampling.LANCZOS)
39
  return img
40
 
 
41
  def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
42
  keep = output_dict["scores"] > threshold
43
  boxes = output_dict["boxes"][keep].tolist()
@@ -45,7 +47,9 @@ def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
45
  labels = output_dict["labels"][keep].tolist()
46
 
47
  if id2label is not None:
 
48
  labels = [id2label[x] for x in labels]
 
49
 
50
  plt.figure(figsize=(50, 50))
51
  plt.imshow(img)
@@ -57,45 +61,66 @@ def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
57
  ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8))
58
  plt.axis("off")
59
  return fig2img(plt.gcf())
60
-
61
  def get_original_image(url_input):
62
  if validators.url(url_input):
63
  image = Image.open(requests.get(url_input, stream=True).raw)
 
64
  return image
65
 
66
- def detect_objects(model_name, url_input, image_input, webcam_input, threshold):
67
- # Extract model and feature extractor
 
68
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
 
69
  if "yolos" in model_name:
70
  model = YolosForObjectDetection.from_pretrained(model_name)
71
  elif "detr" in model_name:
72
  model = DetrForObjectDetection.from_pretrained(model_name)
 
73
  if validators.url(url_input):
74
  image = get_original_image(url_input)
75
- elif image_input is not None:
 
76
  image = image_input
77
- elif webcam_input is not None:
 
78
  image = webcam_input
79
- else:
80
- return None
81
- # Make prediction
82
  processed_outputs = make_prediction(image, feature_extractor, model)
83
- # Visualize prediction
 
84
  viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
 
85
  return viz_img
86
-
87
  def set_example_image(example: list) -> dict:
88
  return gr.Image.update(value=example[0])
89
 
90
  def set_example_url(example: list) -> dict:
91
  return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
92
 
93
- title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
94
 
95
- models = ["nickmuchi/yolos-small-finetuned-license-plate-detection", "nickmuchi/detr-resnet50-license-plate-detection"]
96
- urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ", "https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
 
 
 
 
 
 
 
 
 
 
 
97
  images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
98
 
 
 
 
 
99
  css = '''
100
  h1#title {
101
  text-align: center;
@@ -104,41 +129,51 @@ h1#title {
104
  demo = gr.Blocks(css=css)
105
 
106
  with demo:
107
- gr.Markdown(title)
108
- options = gr.Dropdown(choices=models, label='Object Detection Model', value=models[0], show_label=True)
109
- slider_input = gr.Slider(minimum=0.2, maximum=1, value=0.5, step=0.1, label='Prediction Threshold')
 
 
110
 
111
  with gr.Tabs():
112
  with gr.TabItem('Image URL'):
113
  with gr.Row():
114
  with gr.Column():
115
- url_input = gr.Textbox(lines=2, label='Enter valid image URL here..')
116
- original_image = gr.Image()
117
  url_input.change(get_original_image, url_input, original_image)
118
  with gr.Column():
119
- img_output_from_url = gr.Image()
 
120
  with gr.Row():
121
- example_url = gr.Examples(examples=urls, inputs=[url_input])
 
 
122
  url_but = gr.Button('Detect')
123
 
124
  with gr.TabItem('Image Upload'):
125
  with gr.Row():
126
- img_input = gr.Image(type='pil')
127
- img_output_from_upload = gr.Image()
128
- with gr.Row():
129
- example_images = gr.Examples(examples=images, inputs=[img_input])
 
 
 
130
  img_but = gr.Button('Detect')
131
 
132
  with gr.TabItem('WebCam'):
133
  with gr.Row():
134
- web_input = gr.Camera()
135
- img_output_from_webcam = gr.Image()
 
136
  cam_but = gr.Button('Detect')
137
 
138
- url_but.click(detect_objects, inputs=[options, url_input, img_input, web_input, slider_input], outputs=[img_output_from_url], queue=True)
139
- img_but.click(detect_objects, inputs=[options, url_input, img_input, web_input, slider_input], outputs=[img_output_from_upload], queue=True)
140
- cam_but.click(detect_objects, inputs=[options, url_input, img_input, web_input, slider_input], outputs=[img_output_from_webcam], queue=True)
141
 
142
  gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-license-plate-detection-with-yolos)")
143
 
144
- demo.launch(debug=True)
 
 
8
  from transformers import AutoFeatureExtractor, YolosForObjectDetection, DetrForObjectDetection
9
  import os
10
 
11
+
12
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
13
 
14
  # colors for visualization
15
  COLORS = [
 
34
  buf.seek(0)
35
  pil_img = Image.open(buf)
36
  basewidth = 750
37
+ wpercent = (basewidth/float(pil_img.size[0]))
38
+ hsize = int((float(pil_img.size[1])*float(wpercent)))
39
+ img = pil_img.resize((basewidth,hsize), Image.Resampling.LANCZOS)
40
  return img
41
 
42
+
43
  def visualize_prediction(img, output_dict, threshold=0.5, id2label=None):
44
  keep = output_dict["scores"] > threshold
45
  boxes = output_dict["boxes"][keep].tolist()
 
47
  labels = output_dict["labels"][keep].tolist()
48
 
49
  if id2label is not None:
50
+
51
  labels = [id2label[x] for x in labels]
52
+
53
 
54
  plt.figure(figsize=(50, 50))
55
  plt.imshow(img)
 
61
  ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=60, bbox=dict(facecolor="yellow", alpha=0.8))
62
  plt.axis("off")
63
  return fig2img(plt.gcf())
64
+
65
  def get_original_image(url_input):
66
  if validators.url(url_input):
67
  image = Image.open(requests.get(url_input, stream=True).raw)
68
+
69
  return image
70
 
71
+ def detect_objects(model_name,url_input,image_input,webcam_input,threshold):
72
+
73
+ #Extract model and feature extractor
74
  feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
75
+
76
  if "yolos" in model_name:
77
  model = YolosForObjectDetection.from_pretrained(model_name)
78
  elif "detr" in model_name:
79
  model = DetrForObjectDetection.from_pretrained(model_name)
80
+
81
  if validators.url(url_input):
82
  image = get_original_image(url_input)
83
+
84
+ elif image_input:
85
  image = image_input
86
+
87
+ elif webcam_input:
88
  image = webcam_input
89
+
90
+ #Make prediction
 
91
  processed_outputs = make_prediction(image, feature_extractor, model)
92
+
93
+ #Visualize prediction
94
  viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
95
+
96
  return viz_img
97
+
98
  def set_example_image(example: list) -> dict:
99
  return gr.Image.update(value=example[0])
100
 
101
  def set_example_url(example: list) -> dict:
102
  return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0]))
103
 
 
104
 
105
+ title = """<h1 id="title">License Plate Detection with YOLOS</h1>"""
106
+
107
+ description = """
108
+ YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN).
109
+ The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS).
110
+ This model was further fine-tuned on the [Car license plate dataset]("https://www.kaggle.com/datasets/andrewmvd/car-plate-detection") from Kaggle. The dataset consists of 443 images of vehicle with annotations categorised as "Vehicle" and "Rego Plates". The model was trained for 200 epochs on a single GPU.
111
+ Links to HuggingFace Models:
112
+ - [nickmuchi/yolos-small-rego-plates-detection](https://huggingface.co/nickmuchi/yolos-small-rego-plates-detection)
113
+ - [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small)
114
+ """
115
+
116
+ models = ["nickmuchi/yolos-small-finetuned-license-plate-detection","nickmuchi/detr-resnet50-license-plate-detection"]
117
+ urls = ["https://drive.google.com/uc?id=1j9VZQ4NDS4gsubFf3m2qQoTMWLk552bQ","https://drive.google.com/uc?id=1p9wJIqRz3W50e2f_A0D8ftla8hoXz4T5"]
118
  images = [[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]
119
 
120
+ twitter_link = """
121
+ [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
122
+ """
123
+
124
  css = '''
125
  h1#title {
126
  text-align: center;
 
129
  demo = gr.Blocks(css=css)
130
 
131
  with demo:
132
+ gr.Markdown(title)
133
+ gr.Markdown(description)
134
+ gr.Markdown(twitter_link)
135
+ options = gr.Dropdown(choices=models,label='Object Detection Model',value=models[0],show_label=True)
136
+ slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold')
137
 
138
  with gr.Tabs():
139
  with gr.TabItem('Image URL'):
140
  with gr.Row():
141
  with gr.Column():
142
+ url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
143
+ original_image = gr.Image(shape=(750,750))
144
  url_input.change(get_original_image, url_input, original_image)
145
  with gr.Column():
146
+ img_output_from_url = gr.Image(shape=(750,750))
147
+
148
  with gr.Row():
149
+ example_url = gr.Examples(examples=urls,inputs=[url_input])
150
+
151
+
152
  url_but = gr.Button('Detect')
153
 
154
  with gr.TabItem('Image Upload'):
155
  with gr.Row():
156
+ img_input = gr.Image(type='pil',shape=(750,750))
157
+ img_output_from_upload= gr.Image(shape=(750,750))
158
+
159
+ with gr.Row():
160
+ example_images = gr.Examples(examples=images,inputs=[img_input])
161
+
162
+
163
  img_but = gr.Button('Detect')
164
 
165
  with gr.TabItem('WebCam'):
166
  with gr.Row():
167
+ web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True)
168
+ img_output_from_webcam= gr.Image(shape=(750,750))
169
+
170
  cam_but = gr.Button('Detect')
171
 
172
+ url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True)
173
+ img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True)
174
+ cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True)
175
 
176
  gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-license-plate-detection-with-yolos)")
177
 
178
+
179
+ demo.launch(debug=True,enable_queue=True)