Insert-Anything / app.py
isat's picture
Update app.py
00f7e20 verified
raw
history blame
4.57 kB
@spaces.GPU
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt):
if base_mask_option == "Draw Mask":
tar_image = base_image["background"]
tar_mask = base_image["layers"][0]
else:
tar_image = base_image["background"]
tar_mask = base_mask["background"]
if ref_mask_option == "Draw Mask":
ref_image = reference_image["background"]
ref_mask = reference_image["layers"][0]
elif ref_mask_option == "Upload with Mask":
ref_image = reference_image["background"]
ref_mask = ref_mask["background"]
else:
ref_image = reference_image["background"]
ref_mask = get_mask(ref_image, text_prompt)
tar_image = tar_image.convert("RGB")
tar_mask = tar_mask.convert("L")
ref_image = ref_image.convert("RGB")
ref_mask = ref_mask.convert("L")
# Store the received masks for return
received_tar_mask = tar_mask.copy()
received_ref_mask = ref_mask.copy()
return_ref_mask = ref_mask.copy()
tar_image = np.asarray(tar_image)
tar_mask = np.asarray(tar_mask)
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)
ref_image = np.asarray(ref_image)
ref_mask = np.asarray(ref_mask)
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
if tar_mask.sum() == 0:
raise gr.Error('No mask for the background image.Please check mask button!')
if ref_mask.sum() == 0:
raise gr.Error('No mask for the reference image.Please check mask button!')
ref_box_yyxx = get_bbox_from_mask(ref_mask)
ref_mask_3 = np.stack([ref_mask, ref_mask, ref_mask], -1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1 - ref_mask_3)
y1, y2, x1, x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2, x1:x2, :]
ref_mask = ref_mask[y1:y2, x1:x2]
ratio = 1.3
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
masked_ref_image = pad_to_square(masked_ref_image, pad_value=255, random=False)
kernel = np.ones((7, 7), np.uint8)
iterations = 2
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)
# zoom in
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2)
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1, y2, x1, x2 = tar_box_yyxx_crop
old_tar_image = tar_image.copy()
tar_image = tar_image[y1:y2, x1:x2, :]
tar_mask = tar_mask[y1:y2, x1:x2]
H1, W1 = tar_image.shape[0], tar_image.shape[1]
tar_mask = pad_to_square(tar_mask, pad_value=0)
tar_mask = cv2.resize(tar_mask, size)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
pipe_prior_output = redux(Image.fromarray(masked_ref_image))
tar_image = pad_to_square(tar_image, pad_value=255)
H2, W2 = tar_image.shape[0], tar_image.shape[1]
tar_image = cv2.resize(tar_image, size)
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)
tar_mask = np.stack([tar_mask, tar_mask, tar_mask], -1)
mask_black = np.ones_like(tar_image) * 0
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)
show_diptych_ref_tar = create_highlighted_mask(diptych_ref_tar, mask_diptych)
show_diptych_ref_tar = Image.fromarray(show_diptych_ref_tar)
diptych_ref_tar = Image.fromarray(diptych_ref_tar)
mask_diptych[mask_diptych == 1] = 255
mask_diptych = Image.fromarray(mask_diptych)
generator = torch.Generator("cuda").manual_seed(seed)
edited_image = pipe(
image=diptych_ref_tar,
mask_image=mask_diptych,
height=mask_diptych.size[1],
width=mask_diptych.size[0],
max_sequence_length=512,
generator=generator,
**pipe_prior_output,
).images[0]
width, height = edited_image.size
left = width // 2
edited_image = edited_image.crop((left, 0, width, height))
edited_image = np.array(edited_image)
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop))
edited_image = Image.fromarray(edited_image)
if ref_mask_option != "Label to Mask":
return [show_diptych_ref_tar, edited_image, received_tar_mask, received_ref_mask]
else:
return [return_ref_mask, show_diptych_ref_tar, edited_image, received_tar_mask, received_ref_mask]