Spaces:
Runtime error
Runtime error
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt): | |
if base_mask_option == "Draw Mask": | |
tar_image = base_image["background"] | |
tar_mask = base_image["layers"][0] | |
else: | |
tar_image = base_image["background"] | |
tar_mask = base_mask["background"] | |
if ref_mask_option == "Draw Mask": | |
ref_image = reference_image["background"] | |
ref_mask = reference_image["layers"][0] | |
elif ref_mask_option == "Upload with Mask": | |
ref_image = reference_image["background"] | |
ref_mask = ref_mask["background"] | |
else: | |
ref_image = reference_image["background"] | |
ref_mask = get_mask(ref_image, text_prompt) | |
tar_image = tar_image.convert("RGB") | |
tar_mask = tar_mask.convert("L") | |
ref_image = ref_image.convert("RGB") | |
ref_mask = ref_mask.convert("L") | |
# Store the received masks for return | |
received_tar_mask = tar_mask.copy() | |
received_ref_mask = ref_mask.copy() | |
return_ref_mask = ref_mask.copy() | |
tar_image = np.asarray(tar_image) | |
tar_mask = np.asarray(tar_mask) | |
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8) | |
ref_image = np.asarray(ref_image) | |
ref_mask = np.asarray(ref_mask) | |
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) | |
if tar_mask.sum() == 0: | |
raise gr.Error('No mask for the background image.Please check mask button!') | |
if ref_mask.sum() == 0: | |
raise gr.Error('No mask for the reference image.Please check mask button!') | |
ref_box_yyxx = get_bbox_from_mask(ref_mask) | |
ref_mask_3 = np.stack([ref_mask, ref_mask, ref_mask], -1) | |
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1 - ref_mask_3) | |
y1, y2, x1, x2 = ref_box_yyxx | |
masked_ref_image = masked_ref_image[y1:y2, x1:x2, :] | |
ref_mask = ref_mask[y1:y2, x1:x2] | |
ratio = 1.3 | |
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) | |
masked_ref_image = pad_to_square(masked_ref_image, pad_value=255, random=False) | |
kernel = np.ones((7, 7), np.uint8) | |
iterations = 2 | |
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations) | |
# zoom in | |
tar_box_yyxx = get_bbox_from_mask(tar_mask) | |
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2) | |
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) | |
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box | |
y1, y2, x1, x2 = tar_box_yyxx_crop | |
old_tar_image = tar_image.copy() | |
tar_image = tar_image[y1:y2, x1:x2, :] | |
tar_mask = tar_mask[y1:y2, x1:x2] | |
H1, W1 = tar_image.shape[0], tar_image.shape[1] | |
tar_mask = pad_to_square(tar_mask, pad_value=0) | |
tar_mask = cv2.resize(tar_mask, size) | |
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8) | |
pipe_prior_output = redux(Image.fromarray(masked_ref_image)) | |
tar_image = pad_to_square(tar_image, pad_value=255) | |
H2, W2 = tar_image.shape[0], tar_image.shape[1] | |
tar_image = cv2.resize(tar_image, size) | |
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1) | |
tar_mask = np.stack([tar_mask, tar_mask, tar_mask], -1) | |
mask_black = np.ones_like(tar_image) * 0 | |
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1) | |
show_diptych_ref_tar = create_highlighted_mask(diptych_ref_tar, mask_diptych) | |
show_diptych_ref_tar = Image.fromarray(show_diptych_ref_tar) | |
diptych_ref_tar = Image.fromarray(diptych_ref_tar) | |
mask_diptych[mask_diptych == 1] = 255 | |
mask_diptych = Image.fromarray(mask_diptych) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
edited_image = pipe( | |
image=diptych_ref_tar, | |
mask_image=mask_diptych, | |
height=mask_diptych.size[1], | |
width=mask_diptych.size[0], | |
max_sequence_length=512, | |
generator=generator, | |
**pipe_prior_output, | |
).images[0] | |
width, height = edited_image.size | |
left = width // 2 | |
edited_image = edited_image.crop((left, 0, width, height)) | |
edited_image = np.array(edited_image) | |
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop)) | |
edited_image = Image.fromarray(edited_image) | |
if ref_mask_option != "Label to Mask": | |
return [show_diptych_ref_tar, edited_image, received_tar_mask, received_ref_mask] | |
else: | |
return [return_ref_mask, show_diptych_ref_tar, edited_image, received_tar_mask, received_ref_mask] |