Insert-Anything / app.py
isat's picture
Update app.py
8f1b38f verified
raw
history blame
18.4 kB
# app.py — storage-safe + HF Hub friendly
import os
# ---------- ENV & THREADS (set BEFORE importing numpy/torch) ----------
# Accept any of these names from Space Settings, prefer the standard one:
omp_val = (
os.getenv("OMP_NUM_THREADS")
or os.getenv("OMP-NUM-THREADS")
or os.getenv("OMPNUMTHREADS")
or "2"
)
try:
omp_val = str(int(omp_val))
except Exception:
omp_val = "2"
os.environ["OMP_NUM_THREADS"] = omp_val # must be a positive integer string
# Send all caches to persistent storage
os.environ.setdefault("HF_HOME", "/data/.huggingface")
os.environ.setdefault("HF_HUB_CACHE", "/data/.huggingface/hub")
os.environ.setdefault("HF_DATASETS_CACHE", "/data/.huggingface/datasets")
# NOTE: TRANSFORMERS_CACHE is deprecated; using HF_HOME instead.
# Disable Xet path, enable fast transfer
os.environ.setdefault("HF_HUB_DISABLE_XET", "1")
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
# ---------- NOW safe to import heavy libs ----------
import sys
import cv2
import numpy as np
import torch
import gradio as gr
from PIL import Image, ImageFilter, ImageDraw
# Optional: align PyTorch thread pools with OMP setting
try:
torch.set_num_threads(int(omp_val))
torch.set_num_interop_threads(1)
except Exception:
pass
# ---------- HUB IMPORTS ----------
from huggingface_hub import snapshot_download, hf_hub_download # noqa: E402
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline # noqa: E402
import math # noqa: E402
from utils.utils import ( # noqa: E402
get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask
)
# Optional editable installs ONLY if import fails (prefer requirements.txt)
def _ensure_local_editable(pkg_name, rel_path):
try:
__import__(pkg_name)
except ImportError:
os.system(f"python -m pip install -e {rel_path}")
_ensure_local_editable("segment_anything", "segment_anything")
_ensure_local_editable("GroundingDINO", "GroundingDINO")
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
import torchvision # noqa: E402
from GroundingDINO.groundingdino.util.inference import load_model # noqa: E402
# Use the stable SAM API (avoids build_sam import error)
from segment_anything import sam_model_registry, SamPredictor # noqa: E402
import spaces # noqa: E402
import GroundingDINO.groundingdino.datasets.transforms as T # noqa: E402
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # noqa: E402
# ---------- PATHS ----------
PERSIST_ROOT = "/data"
MODELS_DIR = os.path.join(PERSIST_ROOT, "models")
CKPT_DIR = os.path.join(PERSIST_ROOT, "checkpoints")
os.makedirs(MODELS_DIR, exist_ok=True)
os.makedirs(CKPT_DIR, exist_ok=True)
# GroundingDINO config and checkpoint
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py"
GROUNDING_DINO_CHECKPOINT_PATH = os.path.join(CKPT_DIR, "groundingdino_swinb_cogcoor.pth")
# Segment-Anything checkpoint
SAM_ENCODER_VERSION = "vit_h"
SAM_CHECKPOINT_PATH = os.path.join(CKPT_DIR, "sam_vit_h_4b8939.pth")
# ---------- AUTH TOKEN ----------
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN")
# ---------- DOWNLOAD CHECKPOINTS (single files) ----------
# GroundingDINO ckpt (single file)
if not os.path.exists(GROUNDING_DINO_CHECKPOINT_PATH):
g_dino_file = hf_hub_download(
repo_id="ShilongLiu/GroundingDINO",
filename="groundingdino_swinb_cogcoor.pth",
local_dir=CKPT_DIR,
token=hf_token,
)
if g_dino_file != GROUNDING_DINO_CHECKPOINT_PATH:
os.replace(g_dino_file, GROUNDING_DINO_CHECKPOINT_PATH)
# SAM ckpt (single file)
if not os.path.exists(SAM_CHECKPOINT_PATH):
sam_file = hf_hub_download(
repo_id="spaces/mrtlive/segment-anything-model",
filename="sam_vit_h_4b8939.pth",
local_dir=CKPT_DIR,
token=hf_token,
)
if sam_file != SAM_CHECKPOINT_PATH:
os.replace(sam_file, SAM_CHECKPOINT_PATH)
# ---------- DOWNLOAD MODELS (filtered snapshots into /data) ----------
FILL_DIR = os.path.join(MODELS_DIR, "FLUX.1-Fill-dev")
REDUX_DIR = os.path.join(MODELS_DIR, "FLUX.1-Redux-dev")
LORA_DIR = os.path.join(MODELS_DIR, "insertanything_model")
for path in (FILL_DIR, REDUX_DIR, LORA_DIR):
os.makedirs(path, exist_ok=True)
# Only pull what we need (weights/configs). Keep symlinks to avoid copies.
if not os.listdir(FILL_DIR):
snapshot_download(
repo_id="black-forest-labs/FLUX.1-Fill-dev",
local_dir=FILL_DIR,
local_dir_use_symlinks=True,
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt", "*.py", "*.model"],
token=hf_token,
)
if not os.listdir(REDUX_DIR):
snapshot_download(
repo_id="black-forest-labs/FLUX.1-Redux-dev",
local_dir=REDUX_DIR,
local_dir_use_symlinks=True,
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt", "*.py", "*.model"],
token=hf_token,
)
if not os.listdir(LORA_DIR):
snapshot_download(
repo_id="WensongSong/Insert-Anything",
local_dir=LORA_DIR,
local_dir_use_symlinks=True,
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt"],
token=hf_token,
)
# ---------- BUILD MODELS ----------
# GroundingDINO
groundingdino_model = load_model(
model_config_path=GROUNDING_DINO_CONFIG_PATH,
model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH,
device="cuda"
)
# SAM + Predictor (registry API)
sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH)
sam.to(device="cuda")
sam_predictor = SamPredictor(sam)
# Diffusers
dtype = torch.bfloat16
size = (768, 768)
pipe = FluxFillPipeline.from_pretrained(
FILL_DIR,
torch_dtype=dtype
).to("cuda")
pipe.load_lora_weights(
os.path.join(LORA_DIR, "20250321_steps5000_pytorch_lora_weights.safetensors")
)
redux = FluxPriorReduxPipeline.from_pretrained(REDUX_DIR).to(dtype=dtype).to("cuda")
# ---------- APP LOGIC ----------
def transform_image(image_pil):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True):
caption = caption.lower().strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
# filter output
filt_mask = logits.max(dim=1)[0] > box_threshold
logits_filt = logits[filt_mask]
boxes_filt = boxes[filt_mask]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
pred_phrases, scores = [], []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})" if with_logits else pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def get_mask(image, label):
global groundingdino_model, sam_predictor
image_pil = image.convert("RGB")
transformed_image = transform_image(image_pil)
boxes_filt, scores, pred_phrases = get_grounding_output(
groundingdino_model, transformed_image, label
)
W, H = image_pil.size
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
nms_idx = torchvision.ops.nms(boxes_filt, scores, 0.8).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
image_np = np.array(image_pil)
sam_predictor.set_image(image_np)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(
boxes_filt, image_np.shape[:2]
).to("cuda")
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
result_mask = masks[0][0].cpu().numpy()
return Image.fromarray(result_mask)
def create_highlighted_mask(image_np, mask_np, alpha=0.5, gray_value=128):
if mask_np.max() <= 1.0:
mask_np = (mask_np * 255).astype(np.uint8)
mask_bool = mask_np > 128
image_float = image_np.astype(np.float32)
gray_overlay = np.full_like(image_float, gray_value, dtype=np.float32)
result = image_float.copy()
result[mask_bool] = (1 - alpha) * image_float[mask_bool] + alpha * gray_overlay[mask_bool]
return result.astype(np.uint8)
# ---------- EXAMPLES ----------
ref_dir = './examples/ref_image'
ref_mask_dir = './examples/ref_mask'
image_dir = './examples/source_image'
image_mask_dir = './examples/source_mask'
ref_list = sorted([os.path.join(ref_dir, f) for f in os.listdir(ref_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
ref_mask_list = sorted([os.path.join(ref_mask_dir, f) for f in os.listdir(ref_mask_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
image_list = sorted([os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
image_mask_list = sorted([os.path.join(image_mask_dir, f) for f in os.listdir(image_mask_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))])
@spaces.GPU
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt):
if base_mask_option == "Draw Mask":
tar_image = base_image["background"]
tar_mask = base_image["layers"][0]
else:
tar_image = base_image["background"]
tar_mask = base_mask["background"]
if ref_mask_option == "Draw Mask":
ref_image = reference_image["background"]
ref_mask = reference_image["layers"][0]
elif ref_mask_option == "Upload with Mask":
ref_image = reference_image["background"]
ref_mask = ref_mask["background"]
else:
ref_image = reference_image["background"]
ref_mask = get_mask(ref_image, text_prompt)
tar_image = tar_image.convert("RGB")
tar_mask = tar_mask.convert("L")
ref_image = ref_image.convert("RGB")
ref_mask = ref_mask.convert("L")
return_ref_mask = ref_mask.copy()
tar_image = np.asarray(tar_image)
tar_mask = np.asarray(tar_mask)
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)
ref_image = np.asarray(ref_image)
ref_mask = np.asarray(ref_mask)
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
if tar_mask.sum() == 0:
raise gr.Error('No mask for the background image.Please check mask button!')
if ref_mask.sum() == 0:
raise gr.Error('No mask for the reference image.Please check mask button!')
ref_box_yyxx = get_bbox_from_mask(ref_mask)
ref_mask_3 = np.stack([ref_mask, ref_mask, ref_mask], -1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1 - ref_mask_3)
y1, y2, x1, x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2, x1:x2, :]
ref_mask = ref_mask[y1:y2, x1:x2]
ratio = 1.3
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
masked_ref_image = pad_to_square(masked_ref_image, pad_value=255, random=False)
kernel = np.ones((7, 7), np.uint8)
iterations = 2
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)
# zoom in
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2)
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1, y2, x1, x2 = tar_box_yyxx_crop
old_tar_image = tar_image.copy()
tar_image = tar_image[y1:y2, x1:x2, :]
tar_mask = tar_mask[y1:y2, x1:x2]
H1, W1 = tar_image.shape[0], tar_image.shape[1]
tar_mask = pad_to_square(tar_mask, pad_value=0)
tar_mask = cv2.resize(tar_mask, size)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
pipe_prior_output = redux(Image.fromarray(masked_ref_image))
tar_image = pad_to_square(tar_image, pad_value=255)
H2, W2 = tar_image.shape[0], tar_image.shape[1]
tar_image = cv2.resize(tar_image, size)
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)
tar_mask = np.stack([tar_mask, tar_mask, tar_mask], -1)
mask_black = np.ones_like(tar_image) * 0
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)
show_diptych_ref_tar = create_highlighted_mask(diptych_ref_tar, mask_diptych)
show_diptych_ref_tar = Image.fromarray(show_diptych_ref_tar)
diptych_ref_tar = Image.fromarray(diptych_ref_tar)
mask_diptych[mask_diptych == 1] = 255
mask_diptych = Image.fromarray(mask_diptych)
generator = torch.Generator("cuda").manual_seed(seed)
edited_image = pipe(
image=diptych_ref_tar,
mask_image=mask_diptych,
height=mask_diptych.size[1],
width=mask_diptych.size[0],
max_sequence_length=512,
generator=generator,
**pipe_prior_output,
).images[0]
width, height = edited_image.size
left = width // 2
edited_image = edited_image.crop((left, 0, width, height))
edited_image = np.array(edited_image)
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop))
edited_image = Image.fromarray(edited_image)
if ref_mask_option != "Label to Mask":
return [show_diptych_ref_tar, edited_image]
else:
return [return_ref_mask, show_diptych_ref_tar, edited_image]
def update_ui(option):
if option == "Draw Mask":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
with gr.Blocks() as demo:
gr.Markdown("# Insert-Anything")
gr.Markdown("### Make sure to select the correct mask button!!")
gr.Markdown("### Click the output image to toggle between Diptych and final results!!")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil",
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
layers=False, interactive=True)
base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil",
layers=False, brush=False, eraser=False)
with gr.Row():
base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option",
value="Upload with Mask")
with gr.Row():
ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil",
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"),
layers=False, interactive=True)
ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil",
layers=False, brush=False, eraser=False)
with gr.Row():
ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"],
label="Reference Mask Input Option", value="Upload with Mask")
with gr.Row():
text_prompt = gr.Textbox(label="Label",
placeholder="Enter the category of the reference object, e.g., car, dress, toy, etc.")
with gr.Column(scale=1):
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=695, columns=1)
with gr.Accordion("Advanced Option", open=True):
seed = gr.Slider(label="Seed", minimum=-1, maximum=999_999_999, step=1, value=666)
gr.Markdown("### Guidelines")
gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.")
gr.Markdown(" Draw Mask means manually drawing a mask on the original image.")
gr.Markdown(" Upload with Mask means uploading a mask file.")
gr.Markdown(" Label to Mask means simply inputting a label to automatically extract the mask and obtain the result.")
run_local_button = gr.Button(value="Run")
# examples
num_examples = len(image_list)
for i in range(num_examples):
with gr.Row():
if i == 0:
gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1)
gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1)
gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1)
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1)
else:
gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="")
gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="")
gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="")
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="")
if i < num_examples - 1:
gr.HTML("<hr>")
run_local_button.click(
fn=run_local,
inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt],
outputs=[baseline_gallery]
)
demo.launch()