Spaces:
Paused
Paused
# app.py — storage-safe + HF Hub friendly | |
import os | |
# ---------- ENV & THREADS (set BEFORE importing numpy/torch) ---------- | |
# Accept any of these names from Space Settings, prefer the standard one: | |
omp_val = ( | |
os.getenv("OMP_NUM_THREADS") | |
or os.getenv("OMP-NUM-THREADS") | |
or os.getenv("OMPNUMTHREADS") | |
or "2" | |
) | |
try: | |
omp_val = str(int(omp_val)) | |
except Exception: | |
omp_val = "2" | |
os.environ["OMP_NUM_THREADS"] = omp_val # must be a positive integer string | |
# Send all caches to persistent storage | |
os.environ.setdefault("HF_HOME", "/data/.huggingface") | |
os.environ.setdefault("HF_HUB_CACHE", "/data/.huggingface/hub") | |
os.environ.setdefault("HF_DATASETS_CACHE", "/data/.huggingface/datasets") | |
# NOTE: TRANSFORMERS_CACHE is deprecated; using HF_HOME instead. | |
# Disable Xet path, enable fast transfer | |
os.environ.setdefault("HF_HUB_DISABLE_XET", "1") | |
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1") | |
# ---------- NOW safe to import heavy libs ---------- | |
import sys | |
import cv2 | |
import numpy as np | |
import torch | |
import gradio as gr | |
from PIL import Image, ImageFilter, ImageDraw | |
# Optional: align PyTorch thread pools with OMP setting | |
try: | |
torch.set_num_threads(int(omp_val)) | |
torch.set_num_interop_threads(1) | |
except Exception: | |
pass | |
# ---------- HUB IMPORTS ---------- | |
from huggingface_hub import snapshot_download, hf_hub_download # noqa: E402 | |
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline # noqa: E402 | |
import math # noqa: E402 | |
from utils.utils import ( # noqa: E402 | |
get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask | |
) | |
# Optional editable installs ONLY if import fails (prefer requirements.txt) | |
def _ensure_local_editable(pkg_name, rel_path): | |
try: | |
__import__(pkg_name) | |
except ImportError: | |
os.system(f"python -m pip install -e {rel_path}") | |
_ensure_local_editable("segment_anything", "segment_anything") | |
_ensure_local_editable("GroundingDINO", "GroundingDINO") | |
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO")) | |
sys.path.append(os.path.join(os.getcwd(), "segment_anything")) | |
import torchvision # noqa: E402 | |
from GroundingDINO.groundingdino.util.inference import load_model # noqa: E402 | |
# Use the stable SAM API (avoids build_sam import error) | |
from segment_anything import sam_model_registry, SamPredictor # noqa: E402 | |
import spaces # noqa: E402 | |
import GroundingDINO.groundingdino.datasets.transforms as T # noqa: E402 | |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # noqa: E402 | |
# ---------- PATHS ---------- | |
PERSIST_ROOT = "/data" | |
MODELS_DIR = os.path.join(PERSIST_ROOT, "models") | |
CKPT_DIR = os.path.join(PERSIST_ROOT, "checkpoints") | |
os.makedirs(MODELS_DIR, exist_ok=True) | |
os.makedirs(CKPT_DIR, exist_ok=True) | |
# GroundingDINO config and checkpoint | |
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py" | |
GROUNDING_DINO_CHECKPOINT_PATH = os.path.join(CKPT_DIR, "groundingdino_swinb_cogcoor.pth") | |
# Segment-Anything checkpoint | |
SAM_ENCODER_VERSION = "vit_h" | |
SAM_CHECKPOINT_PATH = os.path.join(CKPT_DIR, "sam_vit_h_4b8939.pth") | |
# ---------- AUTH TOKEN ---------- | |
hf_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_HUB_TOKEN") | |
# ---------- DOWNLOAD CHECKPOINTS (single files) ---------- | |
# GroundingDINO ckpt (single file) | |
if not os.path.exists(GROUNDING_DINO_CHECKPOINT_PATH): | |
g_dino_file = hf_hub_download( | |
repo_id="ShilongLiu/GroundingDINO", | |
filename="groundingdino_swinb_cogcoor.pth", | |
local_dir=CKPT_DIR, | |
token=hf_token, | |
) | |
if g_dino_file != GROUNDING_DINO_CHECKPOINT_PATH: | |
os.replace(g_dino_file, GROUNDING_DINO_CHECKPOINT_PATH) | |
# SAM ckpt (single file) | |
if not os.path.exists(SAM_CHECKPOINT_PATH): | |
sam_file = hf_hub_download( | |
repo_id="spaces/mrtlive/segment-anything-model", | |
filename="sam_vit_h_4b8939.pth", | |
local_dir=CKPT_DIR, | |
token=hf_token, | |
) | |
if sam_file != SAM_CHECKPOINT_PATH: | |
os.replace(sam_file, SAM_CHECKPOINT_PATH) | |
# ---------- DOWNLOAD MODELS (filtered snapshots into /data) ---------- | |
FILL_DIR = os.path.join(MODELS_DIR, "FLUX.1-Fill-dev") | |
REDUX_DIR = os.path.join(MODELS_DIR, "FLUX.1-Redux-dev") | |
LORA_DIR = os.path.join(MODELS_DIR, "insertanything_model") | |
for path in (FILL_DIR, REDUX_DIR, LORA_DIR): | |
os.makedirs(path, exist_ok=True) | |
# Only pull what we need (weights/configs). Keep symlinks to avoid copies. | |
if not os.listdir(FILL_DIR): | |
snapshot_download( | |
repo_id="black-forest-labs/FLUX.1-Fill-dev", | |
local_dir=FILL_DIR, | |
local_dir_use_symlinks=True, | |
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt", "*.py", "*.model"], | |
token=hf_token, | |
) | |
if not os.listdir(REDUX_DIR): | |
snapshot_download( | |
repo_id="black-forest-labs/FLUX.1-Redux-dev", | |
local_dir=REDUX_DIR, | |
local_dir_use_symlinks=True, | |
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt", "*.py", "*.model"], | |
token=hf_token, | |
) | |
if not os.listdir(LORA_DIR): | |
snapshot_download( | |
repo_id="WensongSong/Insert-Anything", | |
local_dir=LORA_DIR, | |
local_dir_use_symlinks=True, | |
allow_patterns=["*.safetensors", "*.json", "*.yaml", "*.txt"], | |
token=hf_token, | |
) | |
# ---------- BUILD MODELS ---------- | |
# GroundingDINO | |
groundingdino_model = load_model( | |
model_config_path=GROUNDING_DINO_CONFIG_PATH, | |
model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, | |
device="cuda" | |
) | |
# SAM + Predictor (registry API) | |
sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH) | |
sam.to(device="cuda") | |
sam_predictor = SamPredictor(sam) | |
# Diffusers | |
dtype = torch.bfloat16 | |
size = (768, 768) | |
pipe = FluxFillPipeline.from_pretrained( | |
FILL_DIR, | |
torch_dtype=dtype | |
).to("cuda") | |
pipe.load_lora_weights( | |
os.path.join(LORA_DIR, "20250321_steps5000_pytorch_lora_weights.safetensors") | |
) | |
redux = FluxPriorReduxPipeline.from_pretrained(REDUX_DIR).to(dtype=dtype).to("cuda") | |
# ---------- APP LOGIC ---------- | |
def transform_image(image_pil): | |
transform = T.Compose( | |
[ | |
T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image | |
def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True): | |
caption = caption.lower().strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
with torch.no_grad(): | |
outputs = model(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
# filter output | |
filt_mask = logits.max(dim=1)[0] > box_threshold | |
logits_filt = logits[filt_mask] | |
boxes_filt = boxes[filt_mask] | |
# get phrase | |
tokenlizer = model.tokenizer | |
tokenized = tokenlizer(caption) | |
pred_phrases, scores = [], [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})" if with_logits else pred_phrase) | |
scores.append(logit.max().item()) | |
return boxes_filt, torch.Tensor(scores), pred_phrases | |
def get_mask(image, label): | |
global groundingdino_model, sam_predictor | |
image_pil = image.convert("RGB") | |
transformed_image = transform_image(image_pil) | |
boxes_filt, scores, pred_phrases = get_grounding_output( | |
groundingdino_model, transformed_image, label | |
) | |
W, H = image_pil.size | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
nms_idx = torchvision.ops.nms(boxes_filt, scores, 0.8).numpy().tolist() | |
boxes_filt = boxes_filt[nms_idx] | |
image_np = np.array(image_pil) | |
sam_predictor.set_image(image_np) | |
transformed_boxes = sam_predictor.transform.apply_boxes_torch( | |
boxes_filt, image_np.shape[:2] | |
).to("cuda") | |
masks, _, _ = sam_predictor.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes, | |
multimask_output=False, | |
) | |
result_mask = masks[0][0].cpu().numpy() | |
return Image.fromarray(result_mask) | |
def create_highlighted_mask(image_np, mask_np, alpha=0.5, gray_value=128): | |
if mask_np.max() <= 1.0: | |
mask_np = (mask_np * 255).astype(np.uint8) | |
mask_bool = mask_np > 128 | |
image_float = image_np.astype(np.float32) | |
gray_overlay = np.full_like(image_float, gray_value, dtype=np.float32) | |
result = image_float.copy() | |
result[mask_bool] = (1 - alpha) * image_float[mask_bool] + alpha * gray_overlay[mask_bool] | |
return result.astype(np.uint8) | |
# ---------- EXAMPLES ---------- | |
ref_dir = './examples/ref_image' | |
ref_mask_dir = './examples/ref_mask' | |
image_dir = './examples/source_image' | |
image_mask_dir = './examples/source_mask' | |
ref_list = sorted([os.path.join(ref_dir, f) for f in os.listdir(ref_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))]) | |
ref_mask_list = sorted([os.path.join(ref_mask_dir, f) for f in os.listdir(ref_mask_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))]) | |
image_list = sorted([os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))]) | |
image_mask_list = sorted([os.path.join(image_mask_dir, f) for f in os.listdir(image_mask_dir) if f.lower().endswith((".jpg", ".png", ".jpeg"))]) | |
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt): | |
if base_mask_option == "Draw Mask": | |
tar_image = base_image["background"] | |
tar_mask = base_image["layers"][0] | |
else: | |
tar_image = base_image["background"] | |
tar_mask = base_mask["background"] | |
if ref_mask_option == "Draw Mask": | |
ref_image = reference_image["background"] | |
ref_mask = reference_image["layers"][0] | |
elif ref_mask_option == "Upload with Mask": | |
ref_image = reference_image["background"] | |
ref_mask = ref_mask["background"] | |
else: | |
ref_image = reference_image["background"] | |
ref_mask = get_mask(ref_image, text_prompt) | |
tar_image = tar_image.convert("RGB") | |
tar_mask = tar_mask.convert("L") | |
ref_image = ref_image.convert("RGB") | |
ref_mask = ref_mask.convert("L") | |
return_ref_mask = ref_mask.copy() | |
tar_image = np.asarray(tar_image) | |
tar_mask = np.asarray(tar_mask) | |
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8) | |
ref_image = np.asarray(ref_image) | |
ref_mask = np.asarray(ref_mask) | |
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8) | |
if tar_mask.sum() == 0: | |
raise gr.Error('No mask for the background image.Please check mask button!') | |
if ref_mask.sum() == 0: | |
raise gr.Error('No mask for the reference image.Please check mask button!') | |
ref_box_yyxx = get_bbox_from_mask(ref_mask) | |
ref_mask_3 = np.stack([ref_mask, ref_mask, ref_mask], -1) | |
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1 - ref_mask_3) | |
y1, y2, x1, x2 = ref_box_yyxx | |
masked_ref_image = masked_ref_image[y1:y2, x1:x2, :] | |
ref_mask = ref_mask[y1:y2, x1:x2] | |
ratio = 1.3 | |
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio) | |
masked_ref_image = pad_to_square(masked_ref_image, pad_value=255, random=False) | |
kernel = np.ones((7, 7), np.uint8) | |
iterations = 2 | |
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations) | |
# zoom in | |
tar_box_yyxx = get_bbox_from_mask(tar_mask) | |
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2) | |
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) | |
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box | |
y1, y2, x1, x2 = tar_box_yyxx_crop | |
old_tar_image = tar_image.copy() | |
tar_image = tar_image[y1:y2, x1:x2, :] | |
tar_mask = tar_mask[y1:y2, x1:x2] | |
H1, W1 = tar_image.shape[0], tar_image.shape[1] | |
tar_mask = pad_to_square(tar_mask, pad_value=0) | |
tar_mask = cv2.resize(tar_mask, size) | |
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8) | |
pipe_prior_output = redux(Image.fromarray(masked_ref_image)) | |
tar_image = pad_to_square(tar_image, pad_value=255) | |
H2, W2 = tar_image.shape[0], tar_image.shape[1] | |
tar_image = cv2.resize(tar_image, size) | |
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1) | |
tar_mask = np.stack([tar_mask, tar_mask, tar_mask], -1) | |
mask_black = np.ones_like(tar_image) * 0 | |
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1) | |
show_diptych_ref_tar = create_highlighted_mask(diptych_ref_tar, mask_diptych) | |
show_diptych_ref_tar = Image.fromarray(show_diptych_ref_tar) | |
diptych_ref_tar = Image.fromarray(diptych_ref_tar) | |
mask_diptych[mask_diptych == 1] = 255 | |
mask_diptych = Image.fromarray(mask_diptych) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
edited_image = pipe( | |
image=diptych_ref_tar, | |
mask_image=mask_diptych, | |
height=mask_diptych.size[1], | |
width=mask_diptych.size[0], | |
max_sequence_length=512, | |
generator=generator, | |
**pipe_prior_output, | |
).images[0] | |
width, height = edited_image.size | |
left = width // 2 | |
edited_image = edited_image.crop((left, 0, width, height)) | |
edited_image = np.array(edited_image) | |
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop)) | |
edited_image = Image.fromarray(edited_image) | |
if ref_mask_option != "Label to Mask": | |
return [show_diptych_ref_tar, edited_image] | |
else: | |
return [return_ref_mask, show_diptych_ref_tar, edited_image] | |
def update_ui(option): | |
if option == "Draw Mask": | |
return gr.update(visible=False), gr.update(visible=True) | |
else: | |
return gr.update(visible=True), gr.update(visible=False) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Insert-Anything") | |
gr.Markdown("### Make sure to select the correct mask button!!") | |
gr.Markdown("### Click the output image to toggle between Diptych and final results!!") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Row(): | |
base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil", | |
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"), | |
layers=False, interactive=True) | |
base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil", | |
layers=False, brush=False, eraser=False) | |
with gr.Row(): | |
base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", | |
value="Upload with Mask") | |
with gr.Row(): | |
ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil", | |
brush=gr.Brush(colors=["#FFFFFF"], default_size=30, color_mode="fixed"), | |
layers=False, interactive=True) | |
ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil", | |
layers=False, brush=False, eraser=False) | |
with gr.Row(): | |
ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"], | |
label="Reference Mask Input Option", value="Upload with Mask") | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Label", | |
placeholder="Enter the category of the reference object, e.g., car, dress, toy, etc.") | |
with gr.Column(scale=1): | |
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=695, columns=1) | |
with gr.Accordion("Advanced Option", open=True): | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=999_999_999, step=1, value=666) | |
gr.Markdown("### Guidelines") | |
gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.") | |
gr.Markdown(" Draw Mask means manually drawing a mask on the original image.") | |
gr.Markdown(" Upload with Mask means uploading a mask file.") | |
gr.Markdown(" Label to Mask means simply inputting a label to automatically extract the mask and obtain the result.") | |
run_local_button = gr.Button(value="Run") | |
# examples | |
num_examples = len(image_list) | |
for i in range(num_examples): | |
with gr.Row(): | |
if i == 0: | |
gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1) | |
gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1) | |
gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1) | |
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1) | |
else: | |
gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="") | |
gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="") | |
gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="") | |
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="") | |
if i < num_examples - 1: | |
gr.HTML("<hr>") | |
run_local_button.click( | |
fn=run_local, | |
inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt], | |
outputs=[baseline_gallery] | |
) | |
demo.launch() | |