Spaces:
Runtime error
Runtime error
File size: 7,099 Bytes
30a2426 b515f84 bd5e335 ff8cb83 66b1dc7 b515f84 103bc92 7961699 2b65fe3 e887c2a b515f84 84485f7 445dc1d 7961699 66b1dc7 7961699 ba58b26 7961699 445dc1d cd7efbd 8bddd83 445dc1d 463e62a 445dc1d 84485f7 10e2a26 2ccbf4d 463e62a 2ccbf4d a76fcae 4af1853 463e62a 2ccbf4d abaa624 e34519b 2ccbf4d 4af1853 2ccbf4d e1b8370 66b1dc7 e1b8370 66b1dc7 e1b8370 84dc3a4 463e62a 66b1dc7 3e8e635 4af1853 3e8e635 ad54a96 22d3354 bd5e335 ff8cb83 bd5e335 080bbc9 bf2279b c7634f3 080bbc9 bf2279b 080bbc9 a84883b 080bbc9 2b65fe3 b515f84 b0cff56 b515f84 1c2a1d9 10d5da7 b515f84 2b65fe3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import gradio as gr
import boto3
from botocore import UNSIGNED
from botocore.client import Config
import torch
from huggingface_hub import AsyncInferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import HuggingFaceHub
from langchain.embeddings import HuggingFaceHubEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.prompts import ChatPromptTemplate
from langchain.document_loaders import WebBaseLoader
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.llms import CTransformers
from transformers import AutoModel
from typing import Iterator
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=350, chunk_overlap=10)
embeddings = HuggingFaceHubEmbeddings()
model_id = "TheBloke/zephyr-7B-beta-GGUF"
# model_id = "HuggingFaceH4/zephyr-7b-beta"
# model_id = "meta-llama/Llama-2-7b-chat-hf"
# model = AutoModelForCausalLM.from_pretrained(
# model_id,
# device_map="auto",
# low_cpu_mem_usage=True
# )
# print( "initalized model")
# tokenizer = AutoTokenizer.from_pretrained(model_id)
# model = AutoModelForCausalLM.from_pretrained(model_id)
# model = AutoModel.from_pretrained("TheBloke/zephyr-7B-beta-GGUF")
device = "cpu"
# llm_model = CTransformers(
# model="TheBloke/zephyr-7B-beta-GGUF",
# model_type="mistral",
# max_new_tokens=4384,
# temperature=0.2,
# repetition_penalty=1.13,
# device=device # Set the device explicitly during model initialization
# )
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
model = AutoModelForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta")
# tokenizer = AutoTokenizer.from_pretrained(model_id)
# model = AutoModelForCausalLM.from_pretrained(model_id)
# pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10)
# hf = HuggingFacePipeline(pipeline=pipe)
print( "initalized model")
# tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
s3.download_file('rad-rag-demos', 'vectorstores/chroma.sqlite3', './chroma_db/chroma.sqlite3')
db = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
db.get()
retriever = db.as_retriever()
global qa
qa = RetrievalQA.from_chain_type(llm=llm_model, chain_type="stuff", retriever=retriever, return_source_documents=True)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0])
history[-1][1] = response['result']
return history
def infer(question):
query = question
result = qa({"query": query})
return result
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>Chat with PDF</h1>
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
when everything is ready, you can start asking questions about the pdf ;)</p>
</div>
"""
# with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
# gr.HTML(title)
# chatbot = gr.Chatbot([], elem_id="chatbot")
# with gr.Row():
# question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
# question.submit(add_text, [chatbot, question], [chatbot, question]).then(
# bot, chatbot, chatbot
# )
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with gr.Blocks(css="style.css") as demo:
# gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
# gr.Markdown(LICENSE)
#x = 0
if __name__ == "__main__":
demo.launch() |