|
--- |
|
title: Iris Flower Prediction With MachineLearning |
|
emoji: ๐ |
|
colorFrom: pink |
|
colorTo: green |
|
sdk: docker |
|
pinned: false |
|
license: apache-2.0 |
|
short_description: A beautiful,modern web application that uses MachineLearning |
|
--- |
|
|
|
# ๐ธ Interactive Iris Flower Prediction Web Application ๐ธ |
|
|
|
<<<<<<< HEAD |
|
A beautiful, modern web application that uses Machine Learning to predict Iris flower species with an enhanced interactive user interface, animated backgrounds, and stunning visual effects. |
|
======= |
|
Hare Checkout:=๐ https://prediction-iris-flower-machine-learning.onrender.com ๐๐ซก |
|
|
|
This web is host on render and checkout https://render.com/ this. |
|
>>>>>>> 5402033a2086745c03342e8a3c63247b4ff7cd0a |
|
|
|
**Live Demo**: https://itsluckysharma01.github.io/Prediction_iris_Flower_Machine_Learning-Flask/ ๐๐ซก |
|
|
|
|
|
# ๐ธ Iris Flower Detection ML Project |
|
|
|
[](https://www.python.org/downloads/) |
|
[](https://jupyter.org/) |
|
[](https://scikit-learn.org/) |
|
[](https://opensource.org/licenses/MIT) |
|
|
|
> **Author:** Lucky Sharma |
|
> **Project:** Machine Learning classification model to predict Iris flower species |
|
|
|
## ๐ Table of Contents |
|
|
|
- [๐ฏ Project Overview](#-project-overview) |
|
- [๐บ About the Iris Dataset](#-about-the-iris-dataset) |
|
- [๐ Quick Start](#-quick-start) |
|
- [๐ Features](#-features) |
|
- [๐ง Installation](#-installation) |
|
- [๐ป Usage](#-usage) |
|
- [๐ค Model Performance](#-model-performance) |
|
- [๐ Visualizations](#-visualizations) |
|
- [๐ฎ Making Predictions](#-making-predictions) |
|
- [๐ Project Structure](#-project-structure) |
|
- [๐ ๏ธ Technologies Used](#๏ธ-technologies-used) |
|
- [๐ Model Comparison](#-model-comparison) |
|
- [๐จ Interactive Examples](#-interactive-examples) |
|
- [๐ค Contributing](#-contributing) |
|
- [๐ License](#-license) |
|
|
|
## ๐ฏ Project Overview |
|
|
|
This project implements a **Machine Learning classification model** to predict the species of Iris flowers based on their physical characteristics. The model analyzes four key features of iris flowers and classifies them into one of three species with high accuracy. |
|
|
|
### ๐ฏ **What does this project do?** |
|
- Predicts iris flower species (Setosa, Versicolor, Virginica) |
|
- Analyzes flower measurements (sepal length/width, petal length/width) |
|
- Provides multiple ML algorithms comparison |
|
- Offers both interactive notebook and saved model for predictions |
|
|
|
## ๐บ About the Iris Dataset |
|
|
|
The famous **Iris dataset** contains measurements of 150 iris flowers from three different species: |
|
|
|
| Species | Count | Characteristics | |
|
|---------|-------|----------------| |
|
| ๐ธ **Iris Setosa** | 50 | Smaller petals, distinct features | |
|
| ๐บ **Iris Versicolor** | 50 | Medium-sized features | |
|
| ๐ป **Iris Virginica** | 50 | Larger petals and sepals | |
|
|
|
### ๐ **Features Measured:** |
|
- **Sepal Length** (cm) |
|
- **Sepal Width** (cm) |
|
- **Petal Length** (cm) |
|
- **Petal Width** (cm) |
|
|
|
## ๐ Quick Start |
|
|
|
### 1๏ธโฃ **Clone the Repository** |
|
```bash |
|
git clone <your-repository-url> |
|
cd iris_flower_detection |
|
``` |
|
|
|
### 2๏ธโฃ **Install Dependencies** |
|
```bash |
|
pip install pandas numpy matplotlib seaborn scikit-learn jupyter |
|
``` |
|
|
|
### 3๏ธโฃ **Run the Notebook** |
|
```bash |
|
jupyter notebook iris_flower_Detection_ML-1.ipynb |
|
``` |
|
|
|
### 4๏ธโฃ **Make a Quick Prediction** |
|
```python |
|
import joblib |
|
import pandas as pd |
|
|
|
# Load the trained model |
|
model = joblib.load('iris_flower_model.pkl') |
|
|
|
# Make a prediction |
|
sample = [[5.1, 3.5, 1.4, 0.2]] # [sepal_length, sepal_width, petal_length, petal_width] |
|
prediction = model.predict(sample) |
|
print(f"Predicted species: {prediction[0]}") |
|
``` |
|
|
|
## ๐ Features |
|
|
|
### ๐ **Data Analysis** |
|
- โ
Comprehensive data exploration |
|
- โ
Missing value analysis |
|
- โ
Statistical summaries |
|
- โ
Data visualization |
|
|
|
### ๐ค **Machine Learning Models** |
|
- โ
**Logistic Regression** - Primary model |
|
- โ
**Decision Tree Classifier** - Alternative approach |
|
- โ
**K-Nearest Neighbors** - Distance-based classification |
|
- โ
**Model comparison** and performance evaluation |
|
|
|
### ๐ **Visualizations** |
|
- โ
Histograms for feature distributions |
|
- โ
Scatter plots for feature relationships |
|
- โ
Species distribution analysis |
|
|
|
### ๐พ **Model Persistence** |
|
- โ
Save models using **joblib** |
|
- โ
Save models using **pickle** |
|
- โ
Load and use pre-trained models |
|
|
|
## ๐ง Installation |
|
|
|
### **Requirements** |
|
```txt |
|
pandas>=1.3.0 |
|
numpy>=1.21.0 |
|
matplotlib>=3.4.0 |
|
seaborn>=0.11.0 |
|
scikit-learn>=1.0.0 |
|
jupyter>=1.0.0 |
|
``` |
|
|
|
### **Install via pip** |
|
```bash |
|
pip install -r requirements.txt |
|
``` |
|
|
|
### **Or install individually** |
|
```bash |
|
pip install pandas numpy matplotlib seaborn scikit-learn jupyter |
|
``` |
|
|
|
## ๐ป Usage |
|
|
|
### ๐ **Interactive Notebook** |
|
Open `iris_flower_Detection_ML-1.ipynb` in Jupyter Notebook to: |
|
- Explore the complete data science workflow |
|
- Visualize data patterns |
|
- Train and compare different models |
|
- Make interactive predictions |
|
|
|
### ๐ฎ **Using the Saved Model** |
|
```python |
|
import joblib |
|
import pandas as pd |
|
|
|
# Load the pre-trained model |
|
model = joblib.load('iris_flower_model.pkl') |
|
|
|
# Create sample data |
|
sample_data = { |
|
'sepal_length': [5.1], |
|
'sepal_width': [3.5], |
|
'petal_length': [1.4], |
|
'petal_width': [0.2] |
|
} |
|
|
|
# Convert to DataFrame |
|
df = pd.DataFrame(sample_data) |
|
|
|
# Make prediction |
|
prediction = model.predict(df) |
|
print(f"Predicted Iris species: {prediction[0]}") |
|
``` |
|
|
|
## ๐ค Model Performance |
|
|
|
### ๐ **Accuracy Results** |
|
|
|
| Algorithm | Training Accuracy | Test Accuracy | |
|
|-----------|------------------|---------------| |
|
| **Logistic Regression** | ~95-98% | ~95-98% | |
|
| **Decision Tree** | ~100% | ~95-97% | |
|
| **K-Nearest Neighbors (k=3)** | ~95-98% | ~95-98% | |
|
|
|
### ๐ฏ **Why These Results?** |
|
- **High Accuracy**: Iris dataset is well-separated and clean |
|
- **Low Complexity**: Only 4 features make classification straightforward |
|
- **Balanced Dataset**: Equal samples for each class |
|
|
|
## ๐ Visualizations |
|
|
|
The project includes several visualization techniques: |
|
|
|
### ๐ **Available Plots** |
|
1. **Histograms** - Feature distribution analysis |
|
2. **Scatter Plots** - Relationship between features |
|
3. **Pair Plots** - Multiple feature comparisons |
|
4. **Box Plots** - Statistical summaries by species |
|
|
|
### ๐จ **Example Visualization Code** |
|
```python |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
|
|
# Create scatter plot |
|
plt.figure(figsize=(10, 6)) |
|
sns.scatterplot(data=iris, x='sepal_length', y='sepal_width', hue='species') |
|
plt.title('Sepal Length vs Width by Species') |
|
plt.show() |
|
``` |
|
|
|
## ๐ฎ Making Predictions |
|
|
|
### ๐งช **Interactive Prediction Function** |
|
```python |
|
def predict_iris_species(sepal_length, sepal_width, petal_length, petal_width): |
|
""" |
|
Predict iris species based on measurements |
|
|
|
Parameters: |
|
- sepal_length: float (cm) |
|
- sepal_width: float (cm) |
|
- petal_length: float (cm) |
|
- petal_width: float (cm) |
|
|
|
Returns: |
|
- species: string (Setosa, Versicolor, or Virginica) |
|
""" |
|
model = joblib.load('iris_flower_model.pkl') |
|
|
|
sample = [[sepal_length, sepal_width, petal_length, petal_width]] |
|
prediction = model.predict(sample) |
|
|
|
return prediction[0] |
|
|
|
# Example usage |
|
species = predict_iris_species(5.1, 3.5, 1.4, 0.2) |
|
print(f"Predicted species: {species}") |
|
``` |
|
|
|
### ๐ฏ **Example Predictions** |
|
|
|
| Measurements | Predicted Species | Confidence | |
|
|-------------|------------------|------------| |
|
| [5.1, 3.5, 1.4, 0.2] | Setosa | High | |
|
| [5.9, 3.0, 5.1, 1.8] | Virginica | High | |
|
| [6.2, 2.8, 4.8, 1.8] | Virginica | Medium | |
|
|
|
## ๐ Project Structure |
|
|
|
``` |
|
iris_flower_detection/ |
|
โ |
|
โโโ ๐ iris_flower_Detection_ML-1.ipynb # Main Jupyter notebook |
|
โโโ ๐ค iris_flower_model.pkl # Saved ML model (joblib) |
|
โโโ ๐ค iris_model.pkl # Saved ML model (pickle) |
|
โโโ ๐ README.md # This file |
|
โโโ ๐ requirements.txt # Python dependencies |
|
``` |
|
|
|
## ๐ ๏ธ Technologies Used |
|
|
|
### ๐ **Core Libraries** |
|
- **pandas** - Data manipulation and analysis |
|
- **numpy** - Numerical computing |
|
- **scikit-learn** - Machine learning algorithms |
|
|
|
### ๐ **Visualization** |
|
- **matplotlib** - Basic plotting |
|
- **seaborn** - Statistical visualizations |
|
|
|
### ๐ **Development Environment** |
|
- **Jupyter Notebook** - Interactive development |
|
- **Python 3.7+** - Programming language |
|
|
|
### ๐ง **Model Management** |
|
- **joblib** - Model serialization (recommended) |
|
- **pickle** - Alternative model serialization |
|
|
|
## ๐ Model Comparison |
|
|
|
### ๐ **Algorithm Strengths** |
|
|
|
| Algorithm | Pros | Cons | Best For | |
|
|-----------|------|------|----------| |
|
| **Logistic Regression** | Fast, interpretable, probabilistic | Linear boundaries only | Quick baseline | |
|
| **Decision Tree** | Easy to understand, handles non-linear | Can overfit | Interpretability | |
|
| **K-Nearest Neighbors** | Simple, no training period | Sensitive to outliers | Small datasets | |
|
|
|
### ๐ฏ **Recommendation** |
|
For the Iris dataset, **Logistic Regression** is recommended because: |
|
- โ
High accuracy with fast training |
|
- โ
Provides probability estimates |
|
- โ
Less prone to overfitting |
|
- โ
Good for deployment |
|
|
|
## ๐จ Interactive Examples |
|
|
|
### ๐งช **Try These Samples** |
|
|
|
#### ๐ธ **Setosa Examples** |
|
```python |
|
# Typical Setosa characteristics |
|
predict_iris_species(5.0, 3.0, 1.0, 0.5) # โ Setosa |
|
predict_iris_species(4.8, 3.2, 1.4, 0.3) # โ Setosa |
|
``` |
|
|
|
#### ๐บ **Versicolor Examples** |
|
```python |
|
# Typical Versicolor characteristics |
|
predict_iris_species(6.0, 2.8, 4.0, 1.2) # โ Versicolor |
|
predict_iris_species(5.7, 2.9, 4.2, 1.3) # โ Versicolor |
|
``` |
|
|
|
#### ๐ป **Virginica Examples** |
|
```python |
|
# Typical Virginica characteristics |
|
predict_iris_species(6.5, 3.0, 5.2, 2.0) # โ Virginica |
|
predict_iris_species(7.2, 3.2, 6.0, 1.8) # โ Virginica |
|
``` |
|
|
|
### ๐ฎ **Interactive Prediction Game** |
|
```python |
|
def iris_guessing_game(): |
|
"""Fun interactive game to test your iris knowledge!""" |
|
samples = [ |
|
([5.1, 3.5, 1.4, 0.2], "Setosa"), |
|
([6.7, 3.1, 4.4, 1.4], "Versicolor"), |
|
([6.3, 2.9, 5.6, 1.8], "Virginica") |
|
] |
|
|
|
for i, (measurements, actual) in enumerate(samples): |
|
print(f"\n๐ธ Sample {i+1}: {measurements}") |
|
user_guess = input("Guess the species (Setosa/Versicolor/Virginica): ") |
|
prediction = predict_iris_species(*measurements) |
|
|
|
print(f"Your guess: {user_guess}") |
|
print(f"ML Prediction: {prediction}") |
|
print(f"Actual: {actual}") |
|
print("โ
Correct!" if user_guess.lower() == actual.lower() else "โ Try again!") |
|
|
|
# Run the game |
|
iris_guessing_game() |
|
``` |
|
|
|
## ๐ฌ Advanced Usage |
|
|
|
### ๐ **Model Evaluation Metrics** |
|
```python |
|
from sklearn.metrics import classification_report, confusion_matrix |
|
|
|
# Generate detailed performance report |
|
y_pred = model.predict(X_test) |
|
print("Classification Report:") |
|
print(classification_report(y_test, y_pred)) |
|
|
|
print("\nConfusion Matrix:") |
|
print(confusion_matrix(y_test, y_pred)) |
|
``` |
|
|
|
### ๐ฏ **Cross-Validation** |
|
```python |
|
from sklearn.model_selection import cross_val_score |
|
|
|
# Perform 5-fold cross-validation |
|
cv_scores = cross_val_score(model, X, y, cv=5) |
|
print(f"Cross-validation scores: {cv_scores}") |
|
print(f"Average CV score: {cv_scores.mean():.3f} (+/- {cv_scores.std() * 2:.3f})") |
|
``` |
|
|
|
## ๐ค Contributing |
|
|
|
### ๐ **How to Contribute** |
|
1. **Fork** the repository |
|
2. **Create** a feature branch (`git checkout -b feature/AmazingFeature`) |
|
3. **Commit** your changes (`git commit -m 'Add some AmazingFeature'`) |
|
4. **Push** to the branch (`git push origin feature/AmazingFeature`) |
|
5. **Open** a Pull Request |
|
|
|
### ๐ก **Ideas for Contributions** |
|
- ๐จ Add more visualization techniques |
|
- ๐ค Implement additional ML algorithms |
|
- ๐ Create a web interface |
|
- ๐ฑ Build a mobile app |
|
- ๐ง Add hyperparameter tuning |
|
- ๐ Include more evaluation metrics |
|
|
|
## ๐ Learning Resources |
|
|
|
### ๐ **Learn More About** |
|
- [Iris Dataset History](https://en.wikipedia.org/wiki/Iris_flower_data_set) |
|
- [Scikit-learn Documentation](https://scikit-learn.org/stable/) |
|
- [Machine Learning Basics](https://www.coursera.org/learn/machine-learning) |
|
- [Data Science with Python](https://www.python.org/about/apps/) |
|
|
|
### ๐ฏ **Next Steps** |
|
1. Try other datasets (Wine, Breast Cancer, etc.) |
|
2. Experiment with ensemble methods |
|
3. Add feature engineering techniques |
|
4. Deploy the model as a web service |
|
5. Create a real-time prediction app |
|
|
|
|
|
## โจ New Enhanced Features |
|
|
|
### ๐จ Interactive Design |
|
|
|
- **Modern UI/UX**: Beautiful gradient backgrounds with glassmorphism effects |
|
- **Animated Background Video**: Looping flower videos for immersive experience |
|
- **Interactive Flower Cards**: Click-to-fill example values with hover effects |
|
- **Floating Particles**: Dynamic flower emojis floating across the screen |
|
- **Smooth Animations**: CSS keyframe animations for all elements |
|
|
|
### ๐บ Flower Showcase |
|
|
|
- **Real Flower Images**: Actual photographs of each iris species |
|
- **Visual Flower Display**: High-quality images showing true flower colors |
|
- **Detailed Information**: Comprehensive facts about each flower type with color names |
|
- **Interactive Examples**: Click any flower card to auto-fill the form |
|
- **Species-Specific Styling**: Unique colors and animations for each iris type |
|
- **Dynamic Backgrounds**: Background colors change based on predicted flower type |
|
|
|
### ๐ Enhanced Functionality |
|
|
|
- **Form Validation**: Real-time input validation with visual feedback |
|
- **Number Inputs**: Proper numeric inputs with step controls |
|
- **Confidence Scoring**: Display prediction confidence percentages |
|
- **Error Handling**: Graceful error messages with helpful suggestions |
|
- **Responsive Design**: Works perfectly on desktop, tablet, and mobile |
|
|
|
### ๐ญ Visual Effects |
|
|
|
- **Real Flower Photography**: High-quality images of actual iris flowers |
|
- **Dynamic Background Colors**: Background changes based on predicted flower species |
|
- **Background Videos**: Multiple fallback video sources for reliability |
|
- **Particle System**: Dynamic floating flower animations |
|
- **Confetti Effects**: Celebration animations for successful predictions |
|
- **Glow Effects**: Smooth glowing animations throughout the interface |
|
- **Hover Interactions**: Elements respond to user interactions |
|
- **Custom Favicon**: Beautiful iris flower favicon for all devices and sizes |
|
- **PWA Support**: Web app manifest for mobile installation |
|
- **Color-Themed Results**: Each flower type displays with its natural color scheme |
|
|
|
## ๐จ Favicon and Branding |
|
|
|
The application now includes a complete set of favicon files for optimal display across all devices and platforms: |
|
|
|
### ๐ธ Design Elements |
|
|
|
- **Gradient backgrounds**: Beautiful purple to pink gradients matching the app theme |
|
- **Iris flower motifs**: Custom-designed flower shapes in the favicon |
|
- **Consistent branding**: All icons follow the same color scheme and design language |
|
- **Multiple sizes**: Optimized for different display contexts and resolutions |
|
|
|
### ๐ฑ PWA Features |
|
|
|
- **Installable**: Users can install the app on their mobile devices |
|
- **Standalone mode**: App runs in full-screen mode when installed |
|
- **Custom theme colors**: Matches the application's visual design |
|
- **Optimized icons**: Perfect display in app drawers and home screens |
|
|
|
## ๐ ๏ธ Technical Features |
|
|
|
### Machine Learning |
|
|
|
- `app.py` - The main Flask application |
|
- `iris_model.pkl` / `new_iris_model.pkl` - The trained machine learning model |
|
- `templates/` - Folder containing HTML templates |
|
- `form.html` - Input form for flower measurements |
|
- `result.html` - Page showing prediction results |
|
- `static/` - Folder containing static files |
|
|
|
## How to Run |
|
|
|
1. Double-click on `run_app.bat` or run `python app.py` in your terminal |
|
2. Open your web browser and go to http://127.0.0.1:5000 |
|
3. Enter the flower measurements and click "Predict Flower Species" |
|
|
|
## Sample Measurements |
|
|
|
### Iris Setosa |
|
|
|
- Sepal Length: 5.1 cm |
|
- Sepal Width: 3.5 cm |
|
- Petal Length: 1.4 cm |
|
- Petal Width: 0.2 cm |
|
|
|
### Iris Versicolor |
|
|
|
- Sepal Length: 6.0 cm |
|
- Sepal Width: 2.7 cm |
|
- Petal Length: 4.2 cm |
|
- Petal Width: 1.3 cm |
|
|
|
### Iris Virginica |
|
|
|
- Sepal Length: 6.8 cm |
|
- Sepal Width: 3.0 cm |
|
- Petal Length: 5.5 cm |
|
- Petal Width: 2.1 cm |
|
|
|
## Troubleshooting |
|
|
|
If you encounter issues: |
|
|
|
1. Run `python test_app.py` to verify the model is working correctly |
|
2. Check that you have all the required Python packages installed: |
|
- Flask |
|
- scikit-learn |
|
- joblib |
|
- numpy |
|
3. Try generating a new model with `python create_new_model.py` |
|
|
|
--- |
|
## ๐ License |
|
|
|
This project is licensed under the **MIT License** - see the [LICENSE](LICENSE) file for details. |
|
|
|
## ๐ Acknowledgments |
|
|
|
- **Ronald A. Fisher** - For creating the famous Iris dataset (1936) |
|
- **Scikit-learn Team** - For excellent machine learning tools |
|
- **Jupyter Team** - For the amazing notebook environment |
|
- **Python Community** - For the incredible ecosystem |
|
|
|
--- |
|
--- |
|
|
|
<div align="center"> |
|
|
|
### ๐ **Star this repository if you found it helpful!** ๐ |
|
|
|
**Made with โค๏ธ for the Machine Learning Community** |
|
|
|
</div> |
|
|
|
--- |
|
|
|
## ๐ **Happy Coding!** |
|
|
|
*Remember: The best way to learn machine learning is by doing. Keep experimenting, keep learning!* ๐ |
|
|
|
**Ready to explore the beautiful world of Iris flowers! ๐ธ๐คโจ** |