Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Optional | |
from datasets import load_dataset | |
from huggingface_hub import ModelCard | |
from transformers import HfArgumentParser | |
class ScriptArguments: | |
r""" | |
Arguments for the script. | |
Args: | |
model_name (`str`, *optional*, defaults to `"gpt-3.5-turbo"`): | |
Language model to target. Possible values are: | |
aspect (`str`, *optional*, defaults to `"helpfulness"`): | |
Aspect to target. | |
push_to_hub (`bool`, *optional*, defaults to `False`): | |
Whether to push the dataset to the Hugging Face Hub. | |
repo_id (`str`, *optional*, defaults to `"trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness"`): | |
Hugging Face repository ID to push the dataset to. | |
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
Number of workers to use for dataset processing. | |
""" | |
model_name: str = field( | |
default="gpt-3.5-turbo", | |
metadata={ | |
"help": "Language model to target.", | |
"choices": [ | |
"alpaca-7b", | |
"bard", | |
"falcon-40b-instruct", | |
"gpt-3.5-turbo", | |
"gpt-4", | |
"llama-2-13b-chat", | |
"llama-2-70b-chat", | |
"llama-2-7b-chat", | |
"mpt-30b-chat", | |
"pythia-12b", | |
"starchat", | |
"ultralm-13b", | |
"ultralm-65b", | |
"vicuna-33b", | |
"wizardlm-13b", | |
"wizardlm-70b", | |
"wizardlm-7b", | |
], | |
}, | |
) | |
aspect: str = field( | |
default="helpfulness", | |
metadata={ | |
"help": "Aspect to target. Possible values are: 'helpfulness' (default), 'honesty', " | |
"'instruction-following', 'truthfulness'.", | |
"choices": ["helpfulness", "honesty", "instruction-following", "truthfulness"], | |
}, | |
) | |
push_to_hub: bool = field( | |
default=False, | |
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, | |
) | |
repo_id: str = field( | |
default="trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness", | |
metadata={"help": "Hugging Face repository ID to push the dataset to."}, | |
) | |
dataset_num_proc: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of workers to use for dataset processing."}, | |
) | |
def to_unpaired_preference(example, model_name, aspect): | |
prompt = [{"role": "user", "content": example["instruction"]}] | |
model_index = example["models"].index(model_name) | |
response_content = example["completions"][model_index]["response"] | |
completion = [{"role": "assistant", "content": response_content}] | |
score = int(example["completions"][model_index]["annotations"][aspect]["Rating"]) | |
label = score >= 5 | |
return {"prompt": prompt, "completion": completion, "label": label} | |
model_card = ModelCard(""" | |
--- | |
tags: [trl] | |
--- | |
# UltraFeedback GPT-3.5-Turbo Helpfulness Dataset | |
## Summary | |
The UltraFeedback GPT-3.5-Turbo Helpfulness dataset contains processed user-assistant interactions filtered for helpfulness, derived from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset. It is designed for fine-tuning and evaluating models in alignment tasks. | |
## Data Structure | |
- **Format**: [Conversational](https://huggingface.co/docs/trl/main/dataset_formats#conversational) | |
- **Type**: [Unpaired preference](https://huggingface.co/docs/trl/main/dataset_formats#unpaired-preference) | |
Column: | |
- `"prompt"`: The input question or instruction provided to the model. | |
- `"completion"`: The model's response to the prompt. | |
- `"label"`: A binary value indicating whether the response is sufficiently helpful. | |
## Generation script | |
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/ultrafeedback.py). | |
""") | |
if __name__ == "__main__": | |
parser = HfArgumentParser(ScriptArguments) | |
script_args = parser.parse_args_into_dataclasses()[0] | |
dataset = load_dataset("openbmb/UltraFeedback", split="train") | |
dataset = dataset.filter( | |
lambda example: script_args.model_name in example["models"], | |
batched=False, | |
num_proc=script_args.dataset_num_proc, | |
) | |
dataset = dataset.map( | |
to_unpaired_preference, | |
remove_columns=["source", "instruction", "models", "completions", "correct_answers", "incorrect_answers"], | |
fn_kwargs={"model_name": script_args.model_name, "aspect": script_args.aspect}, | |
num_proc=script_args.dataset_num_proc, | |
) | |
dataset = dataset.train_test_split(test_size=0.05, seed=42) | |
if script_args.push_to_hub: | |
dataset.push_to_hub(script_args.repo_id) | |
model_card.push_to_hub(script_args.repo_id, repo_type="dataset") | |