Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import itertools | |
import tempfile | |
import unittest | |
import pytest | |
import torch | |
from accelerate.utils.memory import release_memory | |
from datasets import load_dataset | |
from parameterized import parameterized | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
from transformers.testing_utils import backend_empty_cache, require_peft, require_torch_accelerator, torch_device | |
from transformers.utils import is_peft_available | |
from trl import DPOConfig, DPOTrainer | |
from ..testing_utils import require_bitsandbytes | |
from .testing_constants import DPO_LOSS_TYPES, DPO_PRECOMPUTE_LOGITS, GRADIENT_CHECKPOINTING_KWARGS, MODELS_TO_TEST | |
if is_peft_available(): | |
from peft import LoraConfig, PeftModel | |
class DPOTrainerSlowTester(unittest.TestCase): | |
def setUp(self): | |
self.dataset = load_dataset("trl-internal-testing/zen", "standard_preference") | |
self.peft_config = LoraConfig( | |
lora_alpha=16, | |
lora_dropout=0.1, | |
r=8, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
self.max_length = 128 | |
def tearDown(self): | |
gc.collect() | |
backend_empty_cache(torch_device) | |
gc.collect() | |
def test_dpo_bare_model(self, model_id, loss_type, pre_compute_logits): | |
""" | |
A test that tests the simple usage of `DPOTrainer` using a bare model in full precision. | |
""" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = DPOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=2, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=2, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
fp16=True, | |
logging_strategy="no", | |
report_to="none", | |
beta=0.1, | |
loss_type=loss_type, | |
precompute_ref_log_probs=pre_compute_logits, | |
max_length=self.max_length, | |
) | |
# dpo train lora model | |
trainer = DPOTrainer( | |
model=model, | |
ref_model=None, | |
args=training_args, | |
train_dataset=self.dataset["train"], | |
eval_dataset=self.dataset["test"], | |
processing_class=tokenizer, | |
) | |
# train the model | |
trainer.train() | |
# save trained model or adapter | |
trainer.save_model() | |
release_memory(model, trainer) | |
def test_dpo_peft_model(self, model_id, loss_type, pre_compute_logits, gradient_checkpointing_kwargs): | |
""" | |
A test that tests the simple usage of `DPOTrainer` using a peft model in full precision + different scenarios of gradient checkpointing. | |
""" | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = DPOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=2, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=2, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
fp16=True, | |
logging_strategy="no", | |
report_to="none", | |
gradient_checkpointing=True, | |
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs, | |
generate_during_eval=False, | |
loss_type=loss_type, | |
precompute_ref_log_probs=pre_compute_logits, | |
beta=0.1, | |
max_length=self.max_length, | |
) | |
# dpo train lora model | |
trainer = DPOTrainer( | |
model=model, | |
ref_model=None, | |
args=training_args, | |
train_dataset=self.dataset["train"], | |
eval_dataset=self.dataset["test"], | |
processing_class=tokenizer, | |
peft_config=self.peft_config, | |
) | |
self.assertIsInstance(trainer.model, PeftModel) | |
self.assertIsNone(trainer.ref_model) | |
# train the model | |
trainer.train() | |
# save trained model or adapter | |
trainer.save_model() | |
release_memory(model, trainer) | |
def test_dpo_peft_model_qlora(self, model_id, loss_type, pre_compute_logits, gradient_checkpointing_kwargs): | |
""" | |
A test that tests the simple usage of `DPOTrainer` using QLoRA + different scenarios of gradient checkpointing. | |
""" | |
quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16) | |
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config) | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = DPOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=2, | |
max_steps=2, | |
remove_unused_columns=False, | |
gradient_accumulation_steps=2, | |
learning_rate=9e-1, | |
eval_strategy="steps", | |
fp16=True, | |
logging_strategy="no", | |
report_to="none", | |
gradient_checkpointing=True, | |
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs, | |
beta=0.1, | |
generate_during_eval=False, | |
loss_type=loss_type, | |
precompute_ref_log_probs=pre_compute_logits, | |
max_length=self.max_length, | |
) | |
# dpo train lora model | |
trainer = DPOTrainer( | |
model=model, | |
ref_model=None, | |
args=training_args, | |
train_dataset=self.dataset["train"], | |
eval_dataset=self.dataset["test"], | |
processing_class=tokenizer, | |
peft_config=self.peft_config, | |
) | |
self.assertIsInstance(trainer.model, PeftModel) | |
self.assertIsNone(trainer.ref_model) | |
# train the model | |
trainer.train() | |
# save trained model or adapter | |
trainer.save_model() | |
release_memory(model, trainer) | |