Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import tempfile | |
import unittest | |
import pytest | |
import torch | |
from accelerate.utils.memory import release_memory | |
from datasets import load_dataset | |
from parameterized import parameterized | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.testing_utils import ( | |
backend_empty_cache, | |
require_liger_kernel, | |
require_peft, | |
require_torch_accelerator, | |
torch_device, | |
) | |
from trl import GRPOConfig, GRPOTrainer | |
from .testing_constants import MODELS_TO_TEST | |
class GRPOTrainerSlowTester(unittest.TestCase): | |
def setUp(self): | |
self.train_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train") | |
self.eval_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="test") | |
self.max_length = 128 | |
def tearDown(self): | |
gc.collect() | |
backend_empty_cache(torch_device) | |
gc.collect() | |
def test_training_with_liger_grpo_loss(self, model_name): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = GRPOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=3, | |
num_generations=3, | |
use_liger_loss=True, | |
max_completion_length=self.max_length, | |
report_to="none", | |
logging_strategy="no", | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token | |
trainer = GRPOTrainer( | |
model=model, | |
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5", | |
args=training_args, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
processing_class=tokenizer, | |
) | |
from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss | |
assert isinstance(trainer.liger_grpo_loss, LigerFusedLinearGRPOLoss) | |
previous_trainable_params = {n: param.clone() for n, param in model.named_parameters()} | |
trainer.train() | |
for n, param in previous_trainable_params.items(): | |
new_param = model.get_parameter(n) | |
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.") | |
release_memory(model, trainer) | |
def test_training_with_liger_grpo_loss_and_peft(self, model_name): | |
from peft import LoraConfig, TaskType | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
training_args = GRPOConfig( | |
output_dir=tmp_dir, | |
per_device_train_batch_size=3, | |
num_generations=3, | |
use_liger_loss=True, | |
max_completion_length=self.max_length, | |
report_to="none", | |
logging_strategy="no", | |
) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token | |
# Configure PEFT with LoRA | |
peft_config = LoraConfig( | |
task_type=TaskType.CAUSAL_LM, | |
inference_mode=False, | |
r=8, | |
lora_alpha=32, | |
lora_dropout=0.1, | |
target_modules=["q_proj", "v_proj"], | |
) | |
trainer = GRPOTrainer( | |
model=model, | |
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5", | |
args=training_args, | |
train_dataset=self.train_dataset, | |
eval_dataset=self.eval_dataset, | |
processing_class=tokenizer, | |
peft_config=peft_config, | |
) | |
from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss | |
assert isinstance(trainer.liger_grpo_loss, LigerFusedLinearGRPOLoss) | |
# Verify PEFT adapter is properly initialized | |
from peft import PeftModel | |
self.assertTrue(isinstance(trainer.model, PeftModel), "Model should be wrapped with PEFT") | |
# Store adapter weights before training | |
previous_trainable_params = { | |
n: param.clone() for n, param in trainer.model.named_parameters() if param.requires_grad | |
} | |
self.assertTrue(len(previous_trainable_params) > 0, "No trainable parameters found in PEFT model") | |
trainer.train() | |
# Verify adapter weights have changed after training | |
for n, param in previous_trainable_params.items(): | |
new_param = trainer.model.get_parameter(n) | |
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.") | |
release_memory(model, trainer) | |