trl-sandbox / tests /slow /test_grpo_slow.py
ivangabriele's picture
feat: initialize project
2f5127c verified
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import tempfile
import unittest
import pytest
import torch
from accelerate.utils.memory import release_memory
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.testing_utils import (
backend_empty_cache,
require_liger_kernel,
require_peft,
require_torch_accelerator,
torch_device,
)
from trl import GRPOConfig, GRPOTrainer
from .testing_constants import MODELS_TO_TEST
@pytest.mark.slow
@require_torch_accelerator
class GRPOTrainerSlowTester(unittest.TestCase):
def setUp(self):
self.train_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
self.eval_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="test")
self.max_length = 128
def tearDown(self):
gc.collect()
backend_empty_cache(torch_device)
gc.collect()
@parameterized.expand(MODELS_TO_TEST)
@require_liger_kernel
def test_training_with_liger_grpo_loss(self, model_name):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=3,
num_generations=3,
use_liger_loss=True,
max_completion_length=self.max_length,
report_to="none",
logging_strategy="no",
)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token
trainer = GRPOTrainer(
model=model,
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
processing_class=tokenizer,
)
from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss
assert isinstance(trainer.liger_grpo_loss, LigerFusedLinearGRPOLoss)
previous_trainable_params = {n: param.clone() for n, param in model.named_parameters()}
trainer.train()
for n, param in previous_trainable_params.items():
new_param = model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
release_memory(model, trainer)
@parameterized.expand(MODELS_TO_TEST)
@require_liger_kernel
@require_peft
def test_training_with_liger_grpo_loss_and_peft(self, model_name):
from peft import LoraConfig, TaskType
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = GRPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=3,
num_generations=3,
use_liger_loss=True,
max_completion_length=self.max_length,
report_to="none",
logging_strategy="no",
)
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token
# Configure PEFT with LoRA
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
target_modules=["q_proj", "v_proj"],
)
trainer = GRPOTrainer(
model=model,
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=self.train_dataset,
eval_dataset=self.eval_dataset,
processing_class=tokenizer,
peft_config=peft_config,
)
from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss
assert isinstance(trainer.liger_grpo_loss, LigerFusedLinearGRPOLoss)
# Verify PEFT adapter is properly initialized
from peft import PeftModel
self.assertTrue(isinstance(trainer.model, PeftModel), "Model should be wrapped with PEFT")
# Store adapter weights before training
previous_trainable_params = {
n: param.clone() for n, param in trainer.model.named_parameters() if param.requires_grad
}
self.assertTrue(len(previous_trainable_params) > 0, "No trainable parameters found in PEFT model")
trainer.train()
# Verify adapter weights have changed after training
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.")
release_memory(model, trainer)