Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Callable, Optional, Union | |
import torch | |
from transformers import GenerationConfig, PreTrainedTokenizer, PreTrainedTokenizerFast, set_seed | |
from ..models import SUPPORTED_ARCHITECTURES, PreTrainedModelWrapper | |
class BestOfNSampler: | |
def __init__( | |
self, | |
model: PreTrainedModelWrapper, | |
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast], | |
queries_to_scores: Callable[[list[str]], list[float]], | |
length_sampler: Any, | |
sample_size: int = 4, | |
seed: Optional[int] = None, | |
n_candidates: int = 1, | |
generation_config: Optional[GenerationConfig] = None, | |
) -> None: | |
r""" | |
Initialize the sampler for best-of-n generation | |
Args: | |
model (`PreTrainedModelWrapper`): | |
The pretrained model to use for generation | |
tokenizer (`PreTrainedTokenizer` or `PreTrainedTokenizerFast`): | |
Tokenizer associated with the pretrained model | |
queries_to_scores (`Callable[[list[str]], list[float]]`): | |
Callable that takes a list of generated texts and returns the associated reward scores | |
length_sampler (`Any`): | |
Sampler used to sample the length of the generated text | |
sample_size (`int`): | |
Number of samples to generate for each query | |
seed (`int`, *optional*): | |
Random seed used to control generation | |
n_candidates (`int`): | |
Number of candidates to return for each query | |
generation_config (`GenerationConfig`, *optional*): | |
Generation config passed to the underlying model's `generate` method. | |
See `GenerationConfig` (https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/text_generation#transformers.GenerationConfig) for more details | |
""" | |
if seed is not None: | |
set_seed(seed) | |
if not isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)): | |
raise ValueError( | |
f"tokenizer must be a PreTrainedTokenizer or PreTrainedTokenizerFast, got {type(tokenizer)}" | |
) | |
if not isinstance(model, (SUPPORTED_ARCHITECTURES)): | |
raise ValueError( | |
f"model must be a PreTrainedModelWrapper, got {type(model)} - supported architectures are: {SUPPORTED_ARCHITECTURES}" | |
) | |
self.model = model | |
self.tokenizer = tokenizer | |
self.queries_to_scores = queries_to_scores | |
self.length_sampler = length_sampler | |
self.gen_config = generation_config | |
self.sample_size = sample_size | |
self.n_candidates = n_candidates | |
def generate( | |
self, | |
tokenized_query: Union[list[int], torch.Tensor, list[torch.Tensor], list[list[int]]], | |
skip_special_tokens: bool = True, | |
device: Optional[Union[str, torch.device]] = None, | |
**generation_kwargs, | |
) -> list[list[str]]: | |
r""" | |
Generate the best of n samples for input queries | |
Args: | |
tokenized_query (`list[int]` or `torch.Tensor` or `list[torch.Tensor]` or `list[int]`): | |
represents either a single tokenized query (a single tensor or a list of integers) or a batch of tokenized queries (a list of tensors or a list of lists of integers) | |
skip_special_tokens (`bool`): | |
Whether to remove the special tokens from the output | |
device (`str` or `torch.device`, *optional*): | |
The device on which the model will be loaded | |
**generation_kwargs (`dict`, *optional*): | |
Additional keyword arguments passed along to the underlying model's `generate` method. | |
This is used to override generation config | |
Returns: | |
list[list[str]]: A list of lists of generated texts | |
""" | |
queries = None | |
if isinstance(tokenized_query, torch.Tensor) and tokenized_query.ndim == 1: | |
queries = tokenized_query.unsqueeze(0) | |
elif isinstance(tokenized_query, list): | |
element_type = type(tokenized_query[0]) | |
if element_type is int: | |
queries = torch.tensor(tokenized_query).unsqueeze(0) | |
elif element_type is torch.Tensor: | |
queries = [tensor.reshape((1, -1)) for tensor in tokenized_query] | |
else: | |
queries = [torch.tensor(query).reshape((1, -1)) for query in tokenized_query] | |
result = [] | |
for query in queries: | |
queries = query.repeat((self.sample_size, 1)) | |
output = self.model.generate( | |
queries.to(device), | |
max_new_tokens=self.length_sampler(), | |
generation_config=self.gen_config, | |
**generation_kwargs, | |
).squeeze() | |
output = self.tokenizer.batch_decode(output, skip_special_tokens=skip_special_tokens) | |
scores = torch.tensor(self.queries_to_scores(output)) | |
output = [output[i] for i in scores.topk(self.n_candidates).indices] | |
result.append(output) | |
return result | |