Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
# Full training | |
python trl/scripts/sft.py \ | |
--model_name_or_path Qwen/Qwen2-0.5B \ | |
--dataset_name trl-lib/Capybara \ | |
--learning_rate 2.0e-5 \ | |
--num_train_epochs 1 \ | |
--packing \ | |
--per_device_train_batch_size 2 \ | |
--gradient_accumulation_steps 8 \ | |
--gradient_checkpointing \ | |
--eos_token '<|im_end|>' \ | |
--logging_steps 25 \ | |
--eval_strategy steps \ | |
--eval_steps 100 \ | |
--output_dir Qwen2-0.5B-SFT \ | |
--push_to_hub | |
# LoRA | |
python trl/scripts/sft.py \ | |
--model_name_or_path Qwen/Qwen2-0.5B \ | |
--dataset_name trl-lib/Capybara \ | |
--learning_rate 2.0e-4 \ | |
--num_train_epochs 1 \ | |
--packing \ | |
--per_device_train_batch_size 2 \ | |
--gradient_accumulation_steps 8 \ | |
--gradient_checkpointing \ | |
--eos_token '<|im_end|>' \ | |
--logging_steps 25 \ | |
--eval_strategy steps \ | |
--eval_steps 100 \ | |
--use_peft \ | |
--lora_r 32 \ | |
--lora_alpha 16 \ | |
--output_dir Qwen2-0.5B-SFT \ | |
--push_to_hub | |
""" | |
import argparse | |
from datasets import load_dataset | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer | |
from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES | |
from trl import ( | |
ModelConfig, | |
ScriptArguments, | |
SFTConfig, | |
SFTTrainer, | |
TrlParser, | |
get_kbit_device_map, | |
get_peft_config, | |
get_quantization_config, | |
setup_chat_format, | |
) | |
def main(script_args, training_args, model_args): | |
################ | |
# Model init kwargs & Tokenizer | |
################ | |
quantization_config = get_quantization_config(model_args) | |
model_kwargs = dict( | |
revision=model_args.model_revision, | |
trust_remote_code=model_args.trust_remote_code, | |
attn_implementation=model_args.attn_implementation, | |
torch_dtype=model_args.torch_dtype, | |
use_cache=False if training_args.gradient_checkpointing else True, | |
device_map=get_kbit_device_map() if quantization_config is not None else None, | |
quantization_config=quantization_config, | |
) | |
# Create model | |
config = AutoConfig.from_pretrained(model_args.model_name_or_path) | |
valid_image_text_architectures = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.values() | |
if config.architectures and any(arch in valid_image_text_architectures for arch in config.architectures): | |
from transformers import AutoModelForImageTextToText | |
model_kwargs.pop("use_cache", None) # Image models do not support cache | |
model = AutoModelForImageTextToText.from_pretrained(model_args.model_name_or_path, **model_kwargs) | |
else: | |
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs) | |
# Create tokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True | |
) | |
# Set default chat template if needed | |
if tokenizer.chat_template is None: | |
model, tokenizer = setup_chat_format(model, tokenizer, format="chatml") | |
################ | |
# Dataset | |
################ | |
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) | |
################ | |
# Training | |
################ | |
trainer = SFTTrainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset[script_args.dataset_train_split], | |
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, | |
processing_class=tokenizer, | |
peft_config=get_peft_config(model_args), | |
) | |
trainer.train() | |
# Save and push to hub | |
trainer.save_model(training_args.output_dir) | |
if training_args.push_to_hub: | |
trainer.push_to_hub(dataset_name=script_args.dataset_name) | |
def make_parser(subparsers: argparse._SubParsersAction = None): | |
dataclass_types = (ScriptArguments, SFTConfig, ModelConfig) | |
if subparsers is not None: | |
parser = subparsers.add_parser("sft", help="Run the SFT training script", dataclass_types=dataclass_types) | |
else: | |
parser = TrlParser(dataclass_types) | |
return parser | |
if __name__ == "__main__": | |
parser = make_parser() | |
# When using the trl cli, this script may be run with additional arguments, corresponding accelerate arguments. | |
# To ensure that their parsing does not interfere with the script arguments, parse the arguments with | |
# `return_remaining_strings=True`, then ignore the remaining strings. | |
script_args, training_args, model_args, _ = parser.parse_args_and_config(return_remaining_strings=True) | |
main(script_args, training_args, model_args) | |