Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass, field | |
from typing import Any, Optional | |
from transformers import TrainingArguments | |
class BCOConfig(TrainingArguments): | |
r""" | |
Configuration class for the [`BCOTrainer`]. | |
This class includes only the parameters that are specific to BCO training. For a full list of training arguments, | |
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may | |
differ from those in [`~transformers.TrainingArguments`]. | |
Using [`~transformers.HfArgumentParser`] we can turn this class into | |
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the | |
command line. | |
Parameters: | |
max_length (`int` or `None`, *optional*, defaults to `1024`): | |
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want | |
to use the default data collator. | |
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): | |
Maximum length of the prompt. This argument is required if you want to use the default data collator. | |
max_completion_length (`int` or `None`, *optional*, defaults to `None`): | |
Maximum length of the completion. This argument is required if you want to use the default data collator | |
and your model is an encoder-decoder. | |
beta (`float`, *optional*, defaults to `0.1`): | |
Parameter controlling the deviation from the reference model. Higher β means less deviation from the | |
reference model. | |
label_pad_token_id (`int`, *optional*, defaults to `-100`): | |
Label pad token id. This argument is required if you want to use the default data collator. | |
padding_value (`int` or `None`, *optional*, defaults to `None`): | |
Padding value to use. If `None`, the padding value of the tokenizer is used. | |
truncation_mode (`str`, *optional*, defaults to `"keep_end"`): | |
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`. | |
This argument is required if you want to use the default data collator. | |
disable_dropout (`bool`, *optional*, defaults to `True`): | |
Whether to disable dropout in the model and reference model. | |
generate_during_eval (`bool`, *optional*, defaults to `False`): | |
If `True`, generates and logs completions from both the model and the reference model to W&B or Comet during | |
evaluation. | |
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`): | |
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, | |
you need to specify if the model returned by the callable is an encoder-decoder model. | |
precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): | |
Whether to precompute reference model log probabilities for training and evaluation datasets. This is | |
useful when training without the reference model to reduce the total GPU memory needed. | |
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a | |
string. | |
ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): | |
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model | |
from a string. | |
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): | |
Number of processes to use for processing the dataset. | |
prompt_sample_size (`int`, *optional*, defaults to `1024`): | |
Number of prompts that are fed to density ratio classifier. | |
min_density_ratio (`float`, *optional*, defaults to `0.5`): | |
Minimum value of the density ratio. The estimated density ratio is clamped to this value. | |
max_density_ratio (`float`, *optional*, defaults to `10.0`): | |
Maximum value of the density ratio. The estimated density ratio is clamped to this value. | |
""" | |
_VALID_DICT_FIELDS = TrainingArguments._VALID_DICT_FIELDS + ["model_init_kwargs", "ref_model_init_kwargs"] | |
# Parameters whose default values are overridden from TrainingArguments | |
logging_steps: float = field( | |
default=10, | |
metadata={ | |
"help": ( | |
"Log every X updates steps. Should be an integer or a float in range `[0,1)`. " | |
"If smaller than 1, will be interpreted as ratio of total training steps." | |
) | |
}, | |
) | |
bf16: bool = field( | |
default=True, | |
metadata={ | |
"help": ( | |
"Whether to use bf16 (mixed) precision instead of 32-bit. Requires Ampere or higher NVIDIA " | |
"architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change." | |
) | |
}, | |
) | |
max_length: Optional[int] = field( | |
default=1024, | |
metadata={ | |
"help": "Maximum length of the sequences (prompt + completion) in the batch. " | |
"This argument is required if you want to use the default data collator." | |
}, | |
) | |
max_prompt_length: Optional[int] = field( | |
default=512, | |
metadata={ | |
"help": "Maximum length of the prompt. " | |
"This argument is required if you want to use the default data collator." | |
}, | |
) | |
max_completion_length: Optional[int] = field( | |
default=None, | |
metadata={ | |
"help": "Maximum length of the completion. This argument is required if you want to use the " | |
"default data collator and your model is an encoder-decoder." | |
}, | |
) | |
beta: float = field( | |
default=0.1, | |
metadata={ | |
"help": "Parameter controlling the deviation from the reference model. " | |
"Higher β means less deviation from the reference model." | |
}, | |
) | |
label_pad_token_id: int = field( | |
default=-100, | |
metadata={ | |
"help": "Label pad token id. This argument is required if you want to use the default data collator." | |
}, | |
) | |
padding_value: Optional[int] = field( | |
default=None, | |
metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."}, | |
) | |
truncation_mode: str = field( | |
default="keep_end", | |
metadata={ | |
"help": "Truncation mode to use when the prompt is too long. Possible values are " | |
"`keep_end` or `keep_start`. This argument is required if you want to use the " | |
"default data collator." | |
}, | |
) | |
disable_dropout: bool = field( | |
default=True, | |
metadata={"help": "Whether to disable dropout in the model and reference model."}, | |
) | |
generate_during_eval: bool = field( | |
default=False, | |
metadata={ | |
"help": "If `True`, generates and logs completions from both the model and the reference model " | |
"to W&B during evaluation." | |
}, | |
) | |
is_encoder_decoder: Optional[bool] = field( | |
default=None, | |
metadata={ | |
"help": "When using the `model_init` argument (callable) to instantiate the model instead of the " | |
"`model` argument, you need to specify if the model returned by the callable is an " | |
"encoder-decoder model." | |
}, | |
) | |
precompute_ref_log_probs: bool = field( | |
default=False, | |
metadata={ | |
"help": "Whether to precompute reference model log probabilities for training and evaluation datasets. " | |
"This is useful when training without the reference model to reduce the total GPU memory " | |
"needed." | |
}, | |
) | |
model_init_kwargs: Optional[dict[str, Any]] = field( | |
default=None, | |
metadata={ | |
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " | |
"model from a string." | |
}, | |
) | |
ref_model_init_kwargs: Optional[dict[str, Any]] = field( | |
default=None, | |
metadata={ | |
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " | |
"reference model from a string." | |
}, | |
) | |
dataset_num_proc: Optional[int] = field( | |
default=None, | |
metadata={"help": "Number of processes to use for processing the dataset."}, | |
) | |
prompt_sample_size: int = field( | |
default=1024, | |
metadata={"help": "Number of prompts that are fed to density ratio classifier."}, | |
) | |
min_density_ratio: float = field( | |
default=0.5, | |
metadata={"help": "Minimum value of the density ratio. The estimated density ratio is clamped to this value."}, | |
) | |
max_density_ratio: float = field( | |
default=10.0, | |
metadata={"help": "Maximum value of the density ratio. The estimated density ratio is clamped to this value."}, | |
) | |