Spaces:
Paused
Paused
# Copyright 2020-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import textwrap | |
from typing import Any, Callable, Optional, Union | |
import jinja2 | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from datasets import Dataset, IterableDataset | |
from transformers import ( | |
BaseImageProcessor, | |
FeatureExtractionMixin, | |
PreTrainedModel, | |
PreTrainedTokenizerBase, | |
ProcessorMixin, | |
TrainerCallback, | |
is_wandb_available, | |
) | |
from transformers.trainer_utils import EvalPrediction | |
from transformers.training_args import OptimizerNames | |
from transformers.utils import is_apex_available, is_peft_available | |
from ..data_utils import is_conversational, maybe_apply_chat_template | |
from ..models.modeling_base import GeometricMixtureWrapper | |
from ..models.utils import unwrap_model_for_generation | |
from .judges import BasePairwiseJudge | |
from .nash_md_config import NashMDConfig | |
from .online_dpo_trainer import OnlineDPOTrainer | |
from .utils import ( | |
SIMPLE_CHAT_TEMPLATE, | |
empty_cache, | |
generate_model_card, | |
get_comet_experiment_url, | |
get_reward, | |
selective_log_softmax, | |
truncate_right, | |
) | |
if is_apex_available(): | |
from apex import amp | |
if is_wandb_available(): | |
import wandb | |
if is_peft_available(): | |
from peft import PeftModel | |
class NashMDTrainer(OnlineDPOTrainer): | |
r""" | |
Initialize NashMDTrainer as a subclass of [`OnlineDPOConfig`]. | |
Args: | |
model (`transformers.PreTrainedModel`): | |
The model to train, preferably an `AutoModelForCausalLM`. | |
ref_model (`PreTrainedModelWrapper`): | |
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no | |
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. | |
reward_model (`transformers.PreTrainedModel`): | |
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`. | |
judge (`BasePairwiseJudge`): | |
The judge to use for pairwise comparison of model completions. | |
args (`NashMDConfig`): | |
The NashMD config arguments to use for training. | |
data_collator (`transformers.DataCollator`): | |
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used | |
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. | |
train_dataset (`datasets.Dataset`): | |
The dataset to use for training. | |
eval_dataset (`datasets.Dataset`): | |
The dataset to use for evaluation. | |
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): | |
Processing class used to process the data. If provided, will be used to automatically process the inputs | |
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or | |
reuse the fine-tuned model. | |
peft_config (`dict`): | |
The peft config to use for training. | |
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): | |
The function to use to compute the metrics. Must take a `EvalPrediction` and return | |
a dictionary string to metric values. | |
callbacks (`list[transformers.TrainerCallback]`): | |
The callbacks to use for training. | |
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): | |
The optimizer and scheduler to use for training. | |
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): | |
The function to use to preprocess the logits before computing the metrics. | |
""" | |
_tag_names = ["trl", "nash-md"] | |
def __init__( | |
self, | |
model: Union[PreTrainedModel, nn.Module] = None, | |
ref_model: Union[PreTrainedModel, nn.Module] = None, | |
reward_model: Union[PreTrainedModel, nn.Module, None] = None, | |
judge: Optional[BasePairwiseJudge] = None, | |
args: Optional[NashMDConfig] = None, | |
data_collator: Optional[Callable] = None, | |
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, | |
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, | |
processing_class: Optional[ | |
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] | |
] = None, | |
peft_config: Optional[dict] = None, | |
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, | |
callbacks: Optional[list[TrainerCallback]] = None, | |
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), | |
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, | |
) -> None: | |
super().__init__( | |
model=model, | |
ref_model=ref_model, | |
reward_model=reward_model, | |
judge=judge, | |
args=args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
eval_dataset=eval_dataset, | |
processing_class=processing_class, | |
reward_processing_class=processing_class, # for now, NashMDTrainer can't use any reward model | |
peft_config=peft_config, | |
compute_metrics=compute_metrics, | |
callbacks=callbacks, | |
optimizers=optimizers, | |
preprocess_logits_for_metrics=preprocess_logits_for_metrics, | |
) | |
self._mixture_coef = self.args.mixture_coef | |
# Overwrite the stats dictionary to include NashMD specific statistics | |
self.stats = { | |
# Remove "non_score_reward", "rlhf_reward", "scores_margin" | |
# Add "mixture_coef" | |
"loss/kl": [], | |
"objective/entropy": [], | |
"loss/score": [], | |
"rewards/probabilities": [], | |
"rewards/accuracies": [], | |
"rewards/margins": [], | |
"logps/chosen": [], | |
"logps/rejected": [], | |
"val/model_contain_eos_token": [], | |
"val/ref_contain_eos_token": [], | |
"beta": [], | |
"mixture_coef": [], | |
} | |
if self.reward_model is not None: | |
self.stats["rewards/chosen"] = [] | |
self.stats["rewards/rejected"] = [] | |
def mixture_coef(self): | |
if isinstance(self._mixture_coef, list): | |
epoch = self.state.epoch | |
return self._mixture_coef[epoch] if epoch < len(self._mixture_coef) else self._mixture_coef[-1] | |
else: | |
return self._mixture_coef | |
def _generate_completions(self, model, prompts): | |
# Generate completions from the policy model. | |
with unwrap_model_for_generation(model, self.accelerator) as unwrapped_policy_for_gen_ctx: | |
model_output = unwrapped_policy_for_gen_ctx.generate( | |
input_ids=prompts["input_ids"], | |
attention_mask=prompts["attention_mask"], | |
generation_config=self.generation_config, | |
) | |
# Get the DDP/FSDP unwrapped version of the main model. | |
# This will be the policy model for GeometricMixtureWrapper (PEFT adapters active if PEFT is used). | |
policy_model_for_gmw = self.accelerator.unwrap_model(model) | |
# Determine the correct reference model for GeometricMixtureWrapper. | |
# This also needs to be DDP/FSDP unwrapped. | |
ref_model_for_gmw: torch.nn.Module | |
if self.ref_model is None: | |
# No explicit ref_model is provided. | |
# Use the base of the main `model` if it's a PEFT model. | |
# policy_model_for_gmw is already DDP-unwrapped. | |
if is_peft_available() and isinstance(policy_model_for_gmw, PeftModel): | |
ref_model_for_gmw = policy_model_for_gmw.get_base_model() | |
else: | |
# Not a PEFT model (or PEFT not available), or already a base model. | |
# Use the DDP-unwrapped policy model itself as the reference. | |
ref_model_for_gmw = policy_model_for_gmw | |
else: | |
# An explicit ref_model is provided. Unwrap it for DDP/FSDP. | |
ref_model_for_gmw = self.accelerator.unwrap_model(self.ref_model) | |
# Both models given to GeometricMixtureWrapper (policy_model_for_gmw and ref_model_for_gmw) are DDP-unwrapped. | |
with torch.no_grad(): # Ensure no_grad context for mixture model generation | |
mixture_model = GeometricMixtureWrapper( | |
model=policy_model_for_gmw, | |
ref_model=ref_model_for_gmw, | |
generation_config=self.generation_config, | |
mixture_coef=self.mixture_coef, | |
device=self.accelerator.device, | |
) | |
mixture_output = mixture_model.generate( | |
input_ids=prompts["input_ids"], | |
attention_mask=prompts["attention_mask"], | |
generation_config=self.generation_config, | |
) | |
return model_output, mixture_output | |
def _process_completions(self, model_output, mixture_output, prompts): | |
context_length = prompts["input_ids"].shape[1] | |
# Process model completions | |
model_completion_ids = model_output[:, context_length:] | |
model_completion_ids, model_completion_mask = truncate_right( | |
model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id | |
) | |
model_data = { | |
"input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1), | |
"attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1), | |
"raw": prompts["raw"], | |
} | |
# Process reference model completions | |
mixture_completion_ids = mixture_output[:, context_length:] | |
mixture_completion_ids, mixture_completion_mask = truncate_right( | |
mixture_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id | |
) | |
mixture_data = { | |
"input_ids": torch.cat((prompts["input_ids"], mixture_completion_ids), dim=1), | |
"attention_mask": torch.cat((prompts["attention_mask"], mixture_completion_mask), dim=1), | |
"raw": prompts["raw"], | |
} | |
return model_data, mixture_data | |
def _compute_rewards(self, model_data, mixture_data, context_length): | |
with torch.no_grad(): | |
_, model_scores, _ = get_reward( | |
self.reward_model, model_data["input_ids"], self.processing_class.pad_token_id, context_length | |
) | |
_, mixture_scores, _ = get_reward( | |
self.reward_model, mixture_data["input_ids"], self.processing_class.pad_token_id, context_length | |
) | |
# Apply EOS penalty if needed | |
if self.args.missing_eos_penalty is not None: | |
model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) | |
mixture_contain_eos = torch.any(mixture_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) | |
model_scores[~model_contain_eos] -= self.args.missing_eos_penalty | |
mixture_scores[~mixture_contain_eos] -= self.args.missing_eos_penalty | |
return model_scores, mixture_scores | |
def _compute_judge(self, model_data, mixture_data, context_length): | |
prompts = model_data["raw"] | |
model_data_completions = self.processing_class.batch_decode( | |
model_data["input_ids"][:, context_length:], skip_special_tokens=True | |
) | |
model_data_completions = [completion.strip() for completion in model_data_completions] | |
mixture_data_completions = self.processing_class.batch_decode( | |
mixture_data["input_ids"][:, context_length:], skip_special_tokens=True | |
) | |
mixture_data_completions = [completion.strip() for completion in mixture_data_completions] | |
if is_conversational({"prompt": prompts[0]}): | |
model_data_completions = [ | |
[{"role": "assistant", "content": completion}] for completion in model_data_completions | |
] | |
environment = jinja2.Environment() | |
template = environment.from_string(SIMPLE_CHAT_TEMPLATE) | |
prompts = [template.render(messages=message) for message in prompts] | |
model_data_completions = [template.render(messages=completion) for completion in model_data_completions] | |
mixture_data_completions = [ | |
[{"role": "assistant", "content": completion}] for completion in mixture_data_completions | |
] | |
mixture_data_completions = [ | |
template.render(messages=completion) for completion in mixture_data_completions | |
] | |
probability = self.judge.judge( | |
prompts, | |
list(zip(model_data_completions, mixture_data_completions)), | |
return_scores=True, | |
) | |
return torch.tensor(probability, device=model_data["input_ids"].device) | |
def _compute_logprobs(self, model, model_data, context_length): | |
def compute_logprobs_for_data(m, data): | |
output = m(data["input_ids"], attention_mask=data["attention_mask"]) | |
logits = output.logits[:, context_length - 1 : -1] | |
token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:]) | |
return token_logprobs | |
# Compute logprobs for model completions under the model | |
model_logprobs_model_data = compute_logprobs_for_data(model, model_data) | |
# Compute logprobs of model completions under the reference model | |
with torch.no_grad(): | |
if self.ref_model is None: | |
with model.disable_adapter(): | |
ref_logprobs_model_data = compute_logprobs_for_data(model, model_data) | |
else: | |
ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data) | |
# Mask padding tokens | |
model_padding_mask = model_data["attention_mask"][:, context_length:] == 0 | |
model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0) | |
ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0) | |
return (model_logprobs_model_data, ref_logprobs_model_data) | |
def _compute_losses( | |
self, | |
model_logprobs_model_data, | |
ref_logprobs_model_data, | |
probability, | |
): | |
# reinforce score where 0.5 is a control variate | |
score = (probability - 0.5) * model_logprobs_model_data.sum(1) | |
# kl divergence via reinforce | |
with torch.no_grad(): | |
log_ratio = model_logprobs_model_data - ref_logprobs_model_data | |
kl_div_log = log_ratio.sum(1) | |
kl_div_loss = (log_ratio * model_logprobs_model_data).sum(1) | |
# final loss | |
loss = self.beta * kl_div_loss - score | |
return loss.mean(), score, kl_div_log | |
def _log_statistics( | |
self, | |
model_data, | |
mixture_data, | |
model_logprobs_model_data, | |
ref_logprobs_model_data, | |
probability, | |
score, | |
kl_div, | |
context_length, | |
model_scores=None, | |
mixture_scores=None, | |
): | |
# Helper function to gather and compute mean | |
def gather_mean(tensor): | |
return self.accelerator.gather_for_metrics(tensor).mean().item() | |
# Log score | |
self.stats["loss/score"].append(gather_mean(score)) | |
# Log KL divergence | |
self.stats["loss/kl"].append(gather_mean(kl_div)) | |
# Log logprobs | |
model_logprobs_model_data_sum = model_logprobs_model_data.sum(1) | |
ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1) | |
self.stats["logps/chosen"].append(gather_mean(model_logprobs_model_data_sum)) | |
self.stats["logps/rejected"].append(gather_mean(ref_logprobs_model_data_sum)) | |
# Log rewards | |
if self.reward_model is not None: | |
self.stats["rewards/chosen"].append(gather_mean(model_scores)) | |
self.stats["rewards/rejected"].append(gather_mean(mixture_scores)) | |
# Log probabilities | |
self.stats["rewards/probabilities"].append(gather_mean(probability)) | |
# Calculate entropy for model data | |
entropy_model_data = -model_logprobs_model_data.sum(1) | |
self.stats["objective/entropy"].append(gather_mean(entropy_model_data)) | |
# Calculate margins | |
margin = model_logprobs_model_data_sum - ref_logprobs_model_data_sum | |
self.stats["rewards/margins"].append(gather_mean(margin)) | |
# Calculate accuracy | |
accuracy = (margin > 0).float() | |
self.stats["rewards/accuracies"].append(gather_mean(accuracy)) | |
# Log EOS token statistics | |
model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) | |
mixture_eos = (mixture_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) | |
self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float())) | |
self.stats["val/ref_contain_eos_token"].append(gather_mean(mixture_eos.float())) | |
# Log beta and mixture coef | |
self.stats["beta"].append(self.beta) | |
self.stats["mixture_coef"].append(self.mixture_coef) | |
def training_step( | |
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None | |
) -> torch.Tensor: | |
model.train() | |
# Apply chat template and tokenize the input | |
batch_size = len(next(iter(inputs.values()))) | |
prompts = inputs["prompt"] | |
inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)] | |
inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs] | |
inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs] | |
inputs = self.data_collator(inputs) | |
# need the prompt_ only | |
inputs = self._prepare_inputs(inputs) | |
context_length = inputs["prompt_input_ids"].shape[1] | |
prompts = { | |
"input_ids": inputs["prompt_input_ids"], | |
"attention_mask": inputs["prompt_attention_mask"], | |
"raw": prompts, | |
} | |
del inputs | |
# Sample completions from both the model and the reference model | |
model_output, mixture_output = self._generate_completions(model, prompts) | |
# Process model completions | |
model_data, mixture_data = self._process_completions(model_output, mixture_output, prompts) | |
# Compute rewards | |
if self.reward_model is not None: | |
model_scores, mixture_scores = self._compute_rewards(model_data, mixture_data, context_length) | |
# probability of the model data vs the mixture data | |
probability = F.sigmoid(model_scores - mixture_scores) | |
else: | |
model_scores, mixture_scores = None, None | |
probability = self._compute_judge(model_data, mixture_data, context_length) | |
# Compute logprobs | |
model_logprobs_model_data, ref_logprobs_model_data = self._compute_logprobs(model, model_data, context_length) | |
# Compute loss | |
loss, score, kl_div = self._compute_losses(model_logprobs_model_data, ref_logprobs_model_data, probability) | |
# Log everything | |
self._log_statistics( | |
model_data, | |
mixture_data, | |
model_logprobs_model_data.detach(), | |
ref_logprobs_model_data, | |
probability, | |
score.detach(), | |
kl_div.detach(), | |
context_length, | |
model_scores, | |
mixture_scores, | |
) | |
if ( | |
self.args.torch_empty_cache_steps is not None | |
and self.state.global_step % self.args.torch_empty_cache_steps == 0 | |
): | |
empty_cache() | |
kwargs = {} | |
# For LOMO optimizers you need to explicitly use the learning rate | |
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: | |
kwargs["learning_rate"] = self._get_learning_rate() | |
if self.args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel training | |
if self.use_apex: | |
with amp.scale_loss(loss, self.optimizer) as scaled_loss: | |
scaled_loss.backward() | |
else: | |
self.accelerator.backward(loss, **kwargs) | |
return loss.detach() / self.args.gradient_accumulation_steps | |
def create_model_card( | |
self, | |
model_name: Optional[str] = None, | |
dataset_name: Optional[str] = None, | |
tags: Union[str, list[str], None] = None, | |
): | |
""" | |
Creates a draft of a model card using the information available to the `Trainer`. | |
Args: | |
model_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the model. | |
dataset_name (`str` or `None`, *optional*, defaults to `None`): | |
Name of the dataset used for training. | |
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): | |
Tags to be associated with the model card. | |
""" | |
if not self.is_world_process_zero(): | |
return | |
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): | |
base_model = self.model.config._name_or_path | |
else: | |
base_model = None | |
tags = tags or set() | |
if isinstance(tags, str): | |
tags = {tags} | |
if hasattr(self.model.config, "unsloth_version"): | |
tags.add("unsloth") | |
tags.update(self._tag_names) | |
citation = textwrap.dedent("""\ | |
@inproceedings{munos2024nash, | |
title = {{Nash Learning from Human Feedback}}, | |
author = {R{\'{e}}mi Munos and Michal Valko and Daniele Calandriello and Mohammad Gheshlaghi Azar and Mark Rowland and Zhaohan Daniel Guo and Yunhao Tang and Matthieu Geist and Thomas Mesnard and C{\\^{o}}me Fiegel and Andrea Michi and Marco Selvi and Sertan Girgin and Nikola Momchev and Olivier Bachem and Daniel J. Mankowitz and Doina Precup and Bilal Piot}, | |
year = 2024, | |
booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024}, | |
publisher = {OpenReview.net}, | |
url = {https://openreview.net/forum?id=Y5AmNYiyCQ} | |
}""") | |
model_card = generate_model_card( | |
base_model=base_model, | |
model_name=model_name, | |
hub_model_id=self.hub_model_id, | |
dataset_name=dataset_name, | |
tags=tags, | |
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, | |
comet_url=get_comet_experiment_url(), | |
trainer_name="Nash-MD", | |
trainer_citation=citation, | |
paper_title="Nash Learning from Human Feedback", | |
paper_id="2312.00886", | |
) | |
model_card.save(os.path.join(self.args.output_dir, "README.md")) | |