File size: 7,085 Bytes
6cfb2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
class Styleformer():

    def __init__(
            self,
            style=0,
            ctf_model_tag="jaimin/Informal_to_formal",
            ftc_model_tag="jaimin/formal_to_informal",
            atp_model_tag="jaimin/Active_to_passive",
            pta_model_tag="jaimin/Passive_to_active",
            adequacy_model_tag="jaimin/parrot_adequacy_model",
    ):
        from transformers import AutoTokenizer
        from transformers import AutoModelForSeq2SeqLM
        from adequacy import Adequacy

        self.style = style
        self.adequacy = adequacy_model_tag and Adequacy(model_tag=adequacy_model_tag, use_auth_token="access")
        self.model_loaded = False

        if self.style == 0:
            self.ctf_tokenizer = AutoTokenizer.from_pretrained(ctf_model_tag, use_auth_token="access")
            self.ctf_model = AutoModelForSeq2SeqLM.from_pretrained(ctf_model_tag, use_auth_token="access")
            print("Casual to Formal model loaded...")
            self.model_loaded = True
        elif self.style == 1:
            self.ftc_tokenizer = AutoTokenizer.from_pretrained(ftc_model_tag, use_auth_token="access")
            self.ftc_model = AutoModelForSeq2SeqLM.from_pretrained(ftc_model_tag, use_auth_token="access")
            print("Formal to Casual model loaded...")
            self.model_loaded = True
        elif self.style == 2:
            self.atp_tokenizer = AutoTokenizer.from_pretrained(atp_model_tag,use_auth_token="access")
            self.atp_model = AutoModelForSeq2SeqLM.from_pretrained(atp_model_tag,use_auth_token="access")
            print("Active to Passive model loaded...")  
            self.model_loaded = True
        elif self.style == 3:
            self.pta_tokenizer = AutoTokenizer.from_pretrained(pta_model_tag,use_auth_token="access")
            self.pta_model = AutoModelForSeq2SeqLM.from_pretrained(pta_model_tag,use_auth_token="access")
            print("Passive to Active model loaded...")        
            self.model_loaded = True
        else:
            print("Only CTF, FTC, ATP and PTA are supported in the pre-release...stay tuned")

    def transfer(self, input_sentence, inference_on=-1, quality_filter=0.95, max_candidates=5):
        if self.model_loaded:
            if inference_on == -1:
                device = "cpu"
            elif inference_on >= 0 and inference_on < 999:
                device = "cpu:" + str(inference_on)
            else:
                device = "cpu"
                print("Onnx + Quantisation is not supported in the pre-release...stay tuned.")

            if self.style == 0:
                output_sentence = self._casual_to_formal(input_sentence, device, quality_filter, max_candidates)
                return output_sentence
            elif self.style == 1:
                output_sentence = self._formal_to_casual(input_sentence, device, quality_filter, max_candidates)
                return output_sentence
            elif self.style == 2:
                output_sentence = self._active_to_passive(input_sentence, device)
                return output_sentence        
            elif self.style == 3:
                output_sentence = self._passive_to_active(input_sentence, device)
                return output_sentence 

        else:
            print("Models aren't loaded for this style, please use the right style during init")

    def _formal_to_casual(self, input_sentence, device, quality_filter, max_candidates):
        ftc_prefix = "transfer Formal to Casual: "
        src_sentence = input_sentence
        input_sentence = ftc_prefix + input_sentence
        input_ids = self.ftc_tokenizer.encode(input_sentence, return_tensors='pt')
        self.ftc_model = self.ftc_model.to(device)
        input_ids = input_ids.to(device)

        preds = self.ftc_model.generate(
            input_ids,
            do_sample=True,
            max_length=32,
            top_k=50,
            top_p=0.95,
            early_stopping=True,
            num_return_sequences=max_candidates)

        gen_sentences = set()
        for pred in preds:
            gen_sentences.add(self.ftc_tokenizer.decode(pred, skip_special_tokens=True).strip())

        adequacy_scored_phrases = self.adequacy.score(src_sentence, list(gen_sentences), quality_filter, device)
        ranked_sentences = sorted(adequacy_scored_phrases.items(), key=lambda x: x[1], reverse=True)
        if len(ranked_sentences) > 0:
            return ranked_sentences[0][0]
        else:
            return None

    def _casual_to_formal(self, input_sentence, device, quality_filter, max_candidates):
        ctf_prefix = "transfer Casual to Formal: "
        src_sentence = input_sentence
        input_sentence = ctf_prefix + input_sentence
        input_ids = self.ctf_tokenizer.encode(input_sentence, return_tensors='pt')
        self.ctf_model = self.ctf_model.to(device)
        input_ids = input_ids.to(device)

        preds = self.ctf_model.generate(
            input_ids,
            do_sample=True,
            max_length=32,
            top_k=50,
            top_p=0.95,
            early_stopping=True,
            num_return_sequences=max_candidates)

        gen_sentences = set()
        for pred in preds:
            gen_sentences.add(self.ctf_tokenizer.decode(pred, skip_special_tokens=True).strip())

        adequacy_scored_phrases = self.adequacy.score(src_sentence, list(gen_sentences), quality_filter, device)
        ranked_sentences = sorted(adequacy_scored_phrases.items(), key=lambda x: x[1], reverse=True)
        if len(ranked_sentences) > 0:
            return ranked_sentences[0][0]
        else:
            return None

    def _active_to_passive(self, input_sentence, device):
        atp_prefix = "transfer Active to Passive: "
        src_sentence = input_sentence
        input_sentence = atp_prefix + input_sentence
        input_ids = self.atp_tokenizer.encode(input_sentence, return_tensors='pt')
        self.atp_model = self.atp_model.to(device)
        input_ids = input_ids.to(device)
        
        preds = self.atp_model.generate(
            input_ids,
            do_sample=True, 
            max_length=32, 
            top_k=50, 
            top_p=0.95, 
            early_stopping=True,
            num_return_sequences=1)
     
        return self.atp_tokenizer.decode(preds[0], skip_special_tokens=True).strip()

    def _passive_to_active(self, input_sentence, device):
        pta_prefix = "transfer Passive to Active: "
        src_sentence = input_sentence
        input_sentence = pta_prefix + input_sentence
        input_ids = self.pta_tokenizer.encode(input_sentence, return_tensors='pt')
        self.pta_model = self.pta_model.to(device)
        input_ids = input_ids.to(device)
        
        preds = self.pta_model.generate(
            input_ids,
            do_sample=True, 
            max_length=32, 
            top_k=50, 
            top_p=0.95, 
            early_stopping=True,
            num_return_sequences=1)
      
        return self.pta_tokenizer.decode(preds[0], skip_special_tokens=True).strip()