jaisun2004's picture
Update app.py
17495bf verified
raw
history blame
5.37 kB
import gradio as gr
import openai
from langdetect import detect
from transformers import pipeline
from keybert import KeyBERT
from fpdf import FPDF
import os
openai.api_key = os.getenv("OPENAI_API_KEY") # Set this in HF Space secrets
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
kw_model = KeyBERT()
# Sample brand list for detection (customize as needed)
BRANDS = ["Zerodha", "Motilal", "ICICI", "HDFC", "ShareKhan", "IND Money", "Samsung", "Nike", "Adidas"]
def extract_brands(text):
found = [brand for brand in BRANDS if brand.lower() in text.lower()]
return found if found else ["None detected"]
def extract_topics(text, top_n=5):
keywords = kw_model.extract_keywords(text, top_n=top_n, stop_words='english')
topics = [kw for kw, score in keywords]
return topics if topics else ["None extracted"]
def make_bullets(summary):
sentences = summary.replace("\n", " ").split('. ')
bullets = [f"- {s.strip()}" for s in sentences if s.strip()]
return "\n".join(bullets)
def make_str(val):
try:
if val is None:
return ""
if isinstance(val, (bool, int, float)):
return str(val)
if isinstance(val, list):
return "\n".join([make_str(v) for v in val])
if isinstance(val, dict):
return str(val)
return str(val)
except Exception:
return ""
def create_pdf_report(language, transcript, transcript_en, summary, brands, topics, key_takeaways):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(0, 10, "Audio Transcript & Analysis Report", ln=True, align="C")
pdf.set_font("Arial", size=12)
pdf.ln(5)
pdf.cell(0, 10, f"Detected Language: {language}", ln=True)
pdf.ln(5)
pdf.multi_cell(0, 8, "Original Transcript:\n" + transcript)
pdf.ln(3)
pdf.multi_cell(0, 8, "English Transcript:\n" + transcript_en)
pdf.ln(3)
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Brands Detected:", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 8, ", ".join(brands))
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Key Topics:", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 8, ", ".join(topics))
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Summary (Bulleted):", ln=True)
pdf.set_font("Arial", size=12)
for takeaway in key_takeaways.split('\n'):
pdf.multi_cell(0, 8, takeaway)
# Save to temporary file
pdf_file = "/tmp/analysis_report.pdf"
pdf.output(pdf_file)
return pdf_file
def process_audio(audio_path):
if not audio_path or not isinstance(audio_path, str):
return ("No audio file provided.", "", "", "", "", "", "", None)
try:
with open(audio_path, "rb") as audio_file:
transcript = openai.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
transcript = make_str(transcript).strip()
except Exception as e:
return (make_str(f"Error in transcription: {e}"), "", "", "", "", "", "", None)
try:
detected_lang = detect(transcript)
lang_text = {'en': 'English', 'hi': 'Hindi', 'ta': 'Tamil'}.get(detected_lang, detected_lang)
except Exception:
lang_text = "unknown"
transcript_en = transcript
if detected_lang != "en":
try:
with open(audio_path, "rb") as audio_file:
transcript_en = openai.audio.translations.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
transcript_en = make_str(transcript_en).strip()
except Exception as e:
transcript_en = make_str(f"Error translating: {e}")
try:
summary_obj = summarizer(transcript_en, max_length=100, min_length=30, do_sample=False)
summary = summary_obj[0]["summary_text"] if isinstance(summary_obj, list) and "summary_text" in summary_obj[0] else make_str(summary_obj)
except Exception as e:
summary = make_str(f"Error summarizing: {e}")
# New: Brands, topics, bullets
brands = extract_brands(transcript_en)
topics = extract_topics(transcript_en)
key_takeaways = make_bullets(summary)
# New: PDF file generation
pdf_file = create_pdf_report(lang_text, transcript, transcript_en, summary, brands, topics, key_takeaways)
return (
lang_text,
transcript,
transcript_en,
", ".join(brands),
", ".join(topics),
key_takeaways,
pdf_file
)
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath", label="Upload MP3/WAV Audio"),
outputs=[
gr.Textbox(label="Detected Language"),
gr.Textbox(label="Original Transcript"),
gr.Textbox(label="English Transcript (if translated)"),
gr.Textbox(label="Brands Detected"),
gr.Textbox(label="Key Topics"),
gr.Textbox(label="Bulleted Key Takeaways"),
gr.File(label="Download PDF Report")
],
title="Audio Transcript, Brand & Topic Analysis (OpenAI Whisper + PDF Download)",
description="Upload your audio file (MP3/WAV). Get full transcript, summary, brand and topic detection, and download results as PDF."
)
iface.launch()