Spaces:
Sleeping
Sleeping
File size: 5,371 Bytes
1d6eeba 402772f 1d6eeba 402772f 17495bf 402772f bec9c56 1d6eeba e227091 17495bf 310b5ef 4698e24 17495bf 2e174b1 8ddae8d 17495bf 1d6eeba 402772f bec9c56 402772f 4698e24 1d6eeba 17495bf 1d6eeba 4698e24 1d6eeba 4698e24 1d6eeba 402772f bec9c56 402772f 4698e24 1d6eeba 4698e24 1d6eeba 17495bf 1d6eeba 17495bf 1d6eeba e227091 8ddae8d e227091 17495bf e227091 17495bf e227091 2e174b1 e227091 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import openai
from langdetect import detect
from transformers import pipeline
from keybert import KeyBERT
from fpdf import FPDF
import os
openai.api_key = os.getenv("OPENAI_API_KEY") # Set this in HF Space secrets
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
kw_model = KeyBERT()
# Sample brand list for detection (customize as needed)
BRANDS = ["Zerodha", "Motilal", "ICICI", "HDFC", "ShareKhan", "IND Money", "Samsung", "Nike", "Adidas"]
def extract_brands(text):
found = [brand for brand in BRANDS if brand.lower() in text.lower()]
return found if found else ["None detected"]
def extract_topics(text, top_n=5):
keywords = kw_model.extract_keywords(text, top_n=top_n, stop_words='english')
topics = [kw for kw, score in keywords]
return topics if topics else ["None extracted"]
def make_bullets(summary):
sentences = summary.replace("\n", " ").split('. ')
bullets = [f"- {s.strip()}" for s in sentences if s.strip()]
return "\n".join(bullets)
def make_str(val):
try:
if val is None:
return ""
if isinstance(val, (bool, int, float)):
return str(val)
if isinstance(val, list):
return "\n".join([make_str(v) for v in val])
if isinstance(val, dict):
return str(val)
return str(val)
except Exception:
return ""
def create_pdf_report(language, transcript, transcript_en, summary, brands, topics, key_takeaways):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", "B", 16)
pdf.cell(0, 10, "Audio Transcript & Analysis Report", ln=True, align="C")
pdf.set_font("Arial", size=12)
pdf.ln(5)
pdf.cell(0, 10, f"Detected Language: {language}", ln=True)
pdf.ln(5)
pdf.multi_cell(0, 8, "Original Transcript:\n" + transcript)
pdf.ln(3)
pdf.multi_cell(0, 8, "English Transcript:\n" + transcript_en)
pdf.ln(3)
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Brands Detected:", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 8, ", ".join(brands))
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Key Topics:", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 8, ", ".join(topics))
pdf.set_font("Arial", "B", 12)
pdf.cell(0, 10, "Summary (Bulleted):", ln=True)
pdf.set_font("Arial", size=12)
for takeaway in key_takeaways.split('\n'):
pdf.multi_cell(0, 8, takeaway)
# Save to temporary file
pdf_file = "/tmp/analysis_report.pdf"
pdf.output(pdf_file)
return pdf_file
def process_audio(audio_path):
if not audio_path or not isinstance(audio_path, str):
return ("No audio file provided.", "", "", "", "", "", "", None)
try:
with open(audio_path, "rb") as audio_file:
transcript = openai.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
transcript = make_str(transcript).strip()
except Exception as e:
return (make_str(f"Error in transcription: {e}"), "", "", "", "", "", "", None)
try:
detected_lang = detect(transcript)
lang_text = {'en': 'English', 'hi': 'Hindi', 'ta': 'Tamil'}.get(detected_lang, detected_lang)
except Exception:
lang_text = "unknown"
transcript_en = transcript
if detected_lang != "en":
try:
with open(audio_path, "rb") as audio_file:
transcript_en = openai.audio.translations.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
transcript_en = make_str(transcript_en).strip()
except Exception as e:
transcript_en = make_str(f"Error translating: {e}")
try:
summary_obj = summarizer(transcript_en, max_length=100, min_length=30, do_sample=False)
summary = summary_obj[0]["summary_text"] if isinstance(summary_obj, list) and "summary_text" in summary_obj[0] else make_str(summary_obj)
except Exception as e:
summary = make_str(f"Error summarizing: {e}")
# New: Brands, topics, bullets
brands = extract_brands(transcript_en)
topics = extract_topics(transcript_en)
key_takeaways = make_bullets(summary)
# New: PDF file generation
pdf_file = create_pdf_report(lang_text, transcript, transcript_en, summary, brands, topics, key_takeaways)
return (
lang_text,
transcript,
transcript_en,
", ".join(brands),
", ".join(topics),
key_takeaways,
pdf_file
)
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath", label="Upload MP3/WAV Audio"),
outputs=[
gr.Textbox(label="Detected Language"),
gr.Textbox(label="Original Transcript"),
gr.Textbox(label="English Transcript (if translated)"),
gr.Textbox(label="Brands Detected"),
gr.Textbox(label="Key Topics"),
gr.Textbox(label="Bulleted Key Takeaways"),
gr.File(label="Download PDF Report")
],
title="Audio Transcript, Brand & Topic Analysis (OpenAI Whisper + PDF Download)",
description="Upload your audio file (MP3/WAV). Get full transcript, summary, brand and topic detection, and download results as PDF."
)
iface.launch()
|