File size: 5,371 Bytes
1d6eeba
402772f
1d6eeba
402772f
17495bf
 
402772f
 
bec9c56
1d6eeba
e227091
17495bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310b5ef
4698e24
 
 
 
 
 
 
 
 
 
 
 
 
 
17495bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e174b1
8ddae8d
17495bf
1d6eeba
402772f
bec9c56
402772f
 
 
 
4698e24
1d6eeba
17495bf
1d6eeba
 
4698e24
1d6eeba
4698e24
1d6eeba
 
 
402772f
bec9c56
402772f
 
 
 
4698e24
1d6eeba
4698e24
1d6eeba
17495bf
 
1d6eeba
17495bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d6eeba
e227091
 
8ddae8d
e227091
 
 
 
17495bf
 
 
 
e227091
17495bf
 
e227091
2e174b1
e227091
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import openai
from langdetect import detect
from transformers import pipeline
from keybert import KeyBERT
from fpdf import FPDF
import os

openai.api_key = os.getenv("OPENAI_API_KEY")  # Set this in HF Space secrets

summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
kw_model = KeyBERT()
# Sample brand list for detection (customize as needed)
BRANDS = ["Zerodha", "Motilal", "ICICI", "HDFC", "ShareKhan", "IND Money", "Samsung", "Nike", "Adidas"]

def extract_brands(text):
    found = [brand for brand in BRANDS if brand.lower() in text.lower()]
    return found if found else ["None detected"]

def extract_topics(text, top_n=5):
    keywords = kw_model.extract_keywords(text, top_n=top_n, stop_words='english')
    topics = [kw for kw, score in keywords]
    return topics if topics else ["None extracted"]

def make_bullets(summary):
    sentences = summary.replace("\n", " ").split('. ')
    bullets = [f"- {s.strip()}" for s in sentences if s.strip()]
    return "\n".join(bullets)

def make_str(val):
    try:
        if val is None:
            return ""
        if isinstance(val, (bool, int, float)):
            return str(val)
        if isinstance(val, list):
            return "\n".join([make_str(v) for v in val])
        if isinstance(val, dict):
            return str(val)
        return str(val)
    except Exception:
        return ""

def create_pdf_report(language, transcript, transcript_en, summary, brands, topics, key_takeaways):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", "B", 16)
    pdf.cell(0, 10, "Audio Transcript & Analysis Report", ln=True, align="C")
    pdf.set_font("Arial", size=12)
    pdf.ln(5)
    pdf.cell(0, 10, f"Detected Language: {language}", ln=True)
    pdf.ln(5)
    pdf.multi_cell(0, 8, "Original Transcript:\n" + transcript)
    pdf.ln(3)
    pdf.multi_cell(0, 8, "English Transcript:\n" + transcript_en)
    pdf.ln(3)
    pdf.set_font("Arial", "B", 12)
    pdf.cell(0, 10, "Brands Detected:", ln=True)
    pdf.set_font("Arial", size=12)
    pdf.multi_cell(0, 8, ", ".join(brands))
    pdf.set_font("Arial", "B", 12)
    pdf.cell(0, 10, "Key Topics:", ln=True)
    pdf.set_font("Arial", size=12)
    pdf.multi_cell(0, 8, ", ".join(topics))
    pdf.set_font("Arial", "B", 12)
    pdf.cell(0, 10, "Summary (Bulleted):", ln=True)
    pdf.set_font("Arial", size=12)
    for takeaway in key_takeaways.split('\n'):
        pdf.multi_cell(0, 8, takeaway)
    # Save to temporary file
    pdf_file = "/tmp/analysis_report.pdf"
    pdf.output(pdf_file)
    return pdf_file

def process_audio(audio_path):
    if not audio_path or not isinstance(audio_path, str):
        return ("No audio file provided.", "", "", "", "", "", "", None)
    try:
        with open(audio_path, "rb") as audio_file:
            transcript = openai.audio.transcriptions.create(
                model="whisper-1",
                file=audio_file,
                response_format="text"
            )
        transcript = make_str(transcript).strip()
    except Exception as e:
        return (make_str(f"Error in transcription: {e}"), "", "", "", "", "", "", None)
    try:
        detected_lang = detect(transcript)
        lang_text = {'en': 'English', 'hi': 'Hindi', 'ta': 'Tamil'}.get(detected_lang, detected_lang)
    except Exception:
        lang_text = "unknown"
    transcript_en = transcript
    if detected_lang != "en":
        try:
            with open(audio_path, "rb") as audio_file:
                transcript_en = openai.audio.translations.create(
                    model="whisper-1",
                    file=audio_file,
                    response_format="text"
                )
            transcript_en = make_str(transcript_en).strip()
        except Exception as e:
            transcript_en = make_str(f"Error translating: {e}")
    try:
        summary_obj = summarizer(transcript_en, max_length=100, min_length=30, do_sample=False)
        summary = summary_obj[0]["summary_text"] if isinstance(summary_obj, list) and "summary_text" in summary_obj[0] else make_str(summary_obj)
    except Exception as e:
        summary = make_str(f"Error summarizing: {e}")
    # New: Brands, topics, bullets
    brands = extract_brands(transcript_en)
    topics = extract_topics(transcript_en)
    key_takeaways = make_bullets(summary)
    # New: PDF file generation
    pdf_file = create_pdf_report(lang_text, transcript, transcript_en, summary, brands, topics, key_takeaways)
    return (
        lang_text,
        transcript,
        transcript_en,
        ", ".join(brands),
        ", ".join(topics),
        key_takeaways,
        pdf_file
    )

iface = gr.Interface(
    fn=process_audio,
    inputs=gr.Audio(type="filepath", label="Upload MP3/WAV Audio"),
    outputs=[
        gr.Textbox(label="Detected Language"),
        gr.Textbox(label="Original Transcript"),
        gr.Textbox(label="English Transcript (if translated)"),
        gr.Textbox(label="Brands Detected"),
        gr.Textbox(label="Key Topics"),
        gr.Textbox(label="Bulleted Key Takeaways"),
        gr.File(label="Download PDF Report")
    ],
    title="Audio Transcript, Brand & Topic Analysis (OpenAI Whisper + PDF Download)",
    description="Upload your audio file (MP3/WAV). Get full transcript, summary, brand and topic detection, and download results as PDF."
)

iface.launch()