Spaces:
Runtime error
Runtime error
File size: 2,395 Bytes
20918ad 64a2aa9 20918ad ce2a170 5c6f78e 64a2aa9 90f2a58 64a2aa9 ce2a170 1693da5 64a2aa9 5c6f78e 045b70a 447347b 045b70a 91c3097 447347b 045b70a 64a2aa9 c025e3c a7afcc6 64a2aa9 982ddaf 64a2aa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import mutual_info_classif
from sklearn.feature_selection import chi2
from sklearn.linear_model import LinearRegression
import numpy as np
def update(array_value):
df = pd.read_csv('emp_experience_data.csv')
pd.options.display.max_columns = 25
data_encoded = df.copy(deep=True)
categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation',
'SalarySatisfaction', 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region']
label_encoding = LabelEncoder()
for col in categorical_column:
data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
data_selected = data_encoded[['EmployeeExperience', 'HealthBenefitsSatisfaction', 'SalarySatisfaction', 'Designation', 'HealthConscious',
'EmployeeFeedbackSentiments', 'Education', 'Gender', 'HoursOfTrainingAttendedLastYear', 'InternalJobMovement', 'Attrition']]
validation_data = data_selected[100:198]
validation_input_data = validation_data.drop(['Attrition'], axis=1)
validation_target_data = validation_data[['Attrition']]
reg = LinearRegression().fit(validation_input_data, validation_target_data)
# In future pass data through array_value parameter
if array_value == "2,2,1,3,1,2,0,1,40,1":
prediction_value = reg.predict(np.array([[2,2,1,3,1,2,0,1,40,1]]))
return f"Attrition Prediction : {prediction_value}!"
if array_value == "0,0,0,3,0,2,0,1,2,1":
prediction_value = reg.predict(np.array([[0,0,0,3,0,2,0,1,2,1]]))
return f"Attrition Prediction : {prediction_value}!"
with gr.Blocks() as demo:
gr.Markdown("*** Employee Experience Prediction ***")
gr.Markdown("[EmployeeExperience, HealthBenefitsSatisfaction, SalarySatisfaction, Designation, HealthConscious, EmployeeFeedbackSentiments, Education, Gender, HoursOfTrainingAttendedLastYear, InternalJobMovement, Attrition]")
with gr.Row():
inp = gr.Dropdown(["2,2,1,3,1,2,0,1,40,1", "0,0,0,3,0,2,0,1,2,1"], label="Prediction Scenario:")
out = gr.Textbox()
btn = gr.Button("Run")
btn.click(fn=update, inputs=inp, outputs=out)
demo.launch() |