Delete vgg16.py
#1
by
jamino30
- opened
vgg16.py
DELETED
|
@@ -1,72 +0,0 @@
|
|
| 1 |
-
import torch.nn as nn
|
| 2 |
-
import torchvision.models as models
|
| 3 |
-
|
| 4 |
-
""" VGG_16 Architecture
|
| 5 |
-
VGG(
|
| 6 |
-
(features): Sequential(
|
| 7 |
-
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 8 |
-
(1): ReLU(inplace=True)
|
| 9 |
-
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 10 |
-
(3): ReLU(inplace=True)
|
| 11 |
-
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
| 12 |
-
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 13 |
-
(6): ReLU(inplace=True)
|
| 14 |
-
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 15 |
-
(8): ReLU(inplace=True)
|
| 16 |
-
(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
| 17 |
-
(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 18 |
-
(11): ReLU(inplace=True)
|
| 19 |
-
(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 20 |
-
(13): ReLU(inplace=True)
|
| 21 |
-
(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 22 |
-
(15): ReLU(inplace=True)
|
| 23 |
-
(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
| 24 |
-
(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 25 |
-
(18): ReLU(inplace=True)
|
| 26 |
-
(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 27 |
-
(20): ReLU(inplace=True)
|
| 28 |
-
(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 29 |
-
(22): ReLU(inplace=True)
|
| 30 |
-
(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
| 31 |
-
(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 32 |
-
(25): ReLU(inplace=True)
|
| 33 |
-
(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 34 |
-
(27): ReLU(inplace=True)
|
| 35 |
-
(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
|
| 36 |
-
(29): ReLU(inplace=True)
|
| 37 |
-
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
|
| 38 |
-
)
|
| 39 |
-
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
|
| 40 |
-
(classifier): Sequential(
|
| 41 |
-
(0): Linear(in_features=25088, out_features=4096, bias=True)
|
| 42 |
-
(1): ReLU(inplace=True)
|
| 43 |
-
(2): Dropout(p=0.5, inplace=False)
|
| 44 |
-
(3): Linear(in_features=4096, out_features=4096, bias=True)
|
| 45 |
-
(4): ReLU(inplace=True)
|
| 46 |
-
(5): Dropout(p=0.5, inplace=False)
|
| 47 |
-
(6): Linear(in_features=4096, out_features=1000, bias=True)
|
| 48 |
-
)
|
| 49 |
-
)
|
| 50 |
-
"""
|
| 51 |
-
|
| 52 |
-
class VGG_16(nn.Module):
|
| 53 |
-
def __init__(self):
|
| 54 |
-
super(VGG_16, self).__init__()
|
| 55 |
-
self.model = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features[:30]
|
| 56 |
-
|
| 57 |
-
for i, _ in enumerate(self.model):
|
| 58 |
-
if i in [4, 9, 16, 23]:
|
| 59 |
-
self.model[i] = nn.AvgPool2d(kernel_size=2, stride=2, padding=0)
|
| 60 |
-
|
| 61 |
-
def forward(self, x):
|
| 62 |
-
features = []
|
| 63 |
-
for i, layer in enumerate(self.model):
|
| 64 |
-
x = layer(x)
|
| 65 |
-
if i in [0, 5, 10, 17, 24]:
|
| 66 |
-
features.append(x)
|
| 67 |
-
return features
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
if __name__ == '__main__':
|
| 71 |
-
model = VGG_16()
|
| 72 |
-
print(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|