Spaces:
Running
Running
File size: 23,505 Bytes
e448593 d830963 2bd2b96 b958e0e 2bd2b96 b958e0e d830963 e448593 d830963 e448593 2bd2b96 d830963 e448593 2bd2b96 e448593 2bd2b96 d830963 2bd2b96 e448593 d830963 2bd2b96 d830963 2bd2b96 d830963 2bd2b96 d830963 2bd2b96 d830963 2bd2b96 d830963 2bd2b96 d830963 2bd2b96 d830963 2bd2b96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import altair as alt
import pandas as pd
import streamlit_vertical_slider as svs
import torch
# from streamlit_vertical_slider import vertical_slider # Not directly used, svs.vertical_slider is
import streamlit as st
import time
import plotly.graph_objects as go # Add Plotly import
# Define options globally as it's used in initialization and UI
options = [str(i) for i in range(10)] + ["Text"]
# --- Session State Initialization ---
# Ensure all session state variables are initialized before first use, especially by widgets.
if 'running_demo' not in st.session_state:
st.session_state.running_demo = False
if 'demo_step' not in st.session_state:
st.session_state.demo_step = 0
if 'last_update_time' not in st.session_state:
st.session_state.last_update_time = 0
if 'loss_container' not in st.session_state:
st.session_state.loss_container = None
if 'previous_chart_html' not in st.session_state:
st.session_state.previous_chart_html = ""
# Initialize states for sliders and ground_truth selector
# Using len(options) to correctly size for 0-9 + "Text"
for i in range(len(options)):
if f"slider_{i}" not in st.session_state:
st.session_state[f"slider_{i}"] = 1.0 / len(options)
if 'ground_truth' not in st.session_state:
st.session_state['ground_truth'] = options[0] # Default to "0"
st.title("Number Token Loss - Demo")
st.markdown("""
Adjust the sliders to set a predicted probability for each token (0-9 and "Text").
The sliders are vertical and compact. The app normalizes the slider values
to form a valid probability distribution, visualizes it, and computes the corresponding
Cross Entropy, NTL-MSE, and NTL-WAS losses.
""")
# --- Scenario Definitions ---
scenarios = [
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "0",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "1",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "2",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "3",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "4",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "5",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "6",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "7",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "8",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass at 0",
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "9",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "0",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "1",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "2",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "3",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "4",
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
},
{
"name": "Probability mass around ground truth (5)",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "5",
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "6",
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "7",
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "8",
"explanation": "Cross Entropy is high, NTL is higher but still penalizes less than CE because distribution knows it's a number."
},
{
"name": "Probability mass around 5",
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
"ground_truth": "9",
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "0",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "1",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "2",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "3",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "4",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "5",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "6",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "7",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "8",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 5",
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
"ground_truth": "9",
"explanation": "Both CE and NTL are high because the prediction is far from correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "0",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "1",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "2",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "3",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "4",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "5",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "6",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "7",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "8",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Probability mass concentrated on 1",
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
"ground_truth": "9",
"explanation": "Both losses are low because the prediction is correct."
},
{
"name": "Almost correct (1 vs 2)",
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
"ground_truth": "0",
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
},
{
"name": "Almost correct (1 vs 2)",
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
"ground_truth": "1",
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
},
{
"name": "Almost correct (1 vs 2)",
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
"ground_truth": "2",
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
},
{
"name": "Almost correct (1 vs 2)",
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
"ground_truth": "3",
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
}
]
# --- Helper Functions ---
def apply_scenario(step_idx):
scenario = scenarios[step_idx]
# These assignments modify session state. They must be done *before* the widgets
# are rendered in the script run that should display these new values.
for i, val in enumerate(scenario["values"]):
st.session_state[f"slider_{i}"] = val
st.session_state['ground_truth'] = scenario["ground_truth"]
def start_demo():
st.session_state.running_demo = True
st.session_state.demo_step = 0
st.session_state.last_update_time = time.time()
apply_scenario(0) # Apply the first scenario's state
# The button click that calls start_demo() will itself cause a rerun.
def stop_demo():
st.session_state.running_demo = False
# --- Demo State Advancement Logic ---
# This block handles advancing the demo. If it advances, it updates session state
# and then reruns. This ensures widgets are drawn with the new state in the next run.
if st.session_state.running_demo:
current_time = time.time()
if current_time - st.session_state.last_update_time > 3.0: # 3 seconds per scenario
next_step = (st.session_state.demo_step + 1) % len(scenarios)
st.session_state.demo_step = next_step
apply_scenario(next_step) # Update session state for the new scenario
st.session_state.last_update_time = time.time() # Reset timer
st.rerun() # Crucial: Rerun to reflect changes in widgets and charts
# --- UI Rendering ---
# This section renders the main UI. It executes after any potential rerun from the block above.
if st.session_state.running_demo:
st.info(f"Showing scenario {st.session_state.demo_step + 1}/{len(scenarios)}: {scenarios[st.session_state.demo_step]['name']}")
st.markdown(f"**Explanation:** {scenarios[st.session_state.demo_step]['explanation']}")
if st.button("Stop Demo"):
stop_demo()
st.rerun()
else: # Not st.session_state.running_demo
if st.button("Start Automated Demo"):
start_demo() # This calls apply_scenario(0)
st.rerun() # Rerun to enter demo mode and draw scenario 0 correctly
# Sliders and Ground Truth Selector
# These widgets will read their initial values from st.session_state.
# User interactions will update st.session_state directly due to their keys.
if not st.session_state.running_demo:
st.markdown("#### Predicted Token Probabilities")
cols = st.columns(len(options))
for i, col in enumerate(cols):
label = options[i] # Use token name directly for label
with col:
svs.vertical_slider(
label=label, min_value=0.0, max_value=1.0, step=0.01, height=50,
key=f"slider_{i}", # This key links the widget to st.session_state[f"slider_{i}"]
slider_color="green", track_color="lightgray", thumb_color="black"
)
# Ground truth selectbox
st.selectbox(
"Ground Truth Token", options=options,
index=options.index(st.session_state['ground_truth']), # Display value from session state
key='ground_truth' # Links widget to st.session_state['ground_truth']
)
# Placeholder for charts and loss calculations that will be updated
# This section always reads the current st.session_state to generate its content.
current_prob_values_from_state = [st.session_state.get(f"slider_{j}", 1.0/len(options)) for j in range(len(options))]
total_from_state = sum(current_prob_values_from_state)
probs_for_charts = (
torch.ones(len(options)) / len(options)
if total_from_state == 0
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
)
gt_choice_for_charts = st.session_state.get('ground_truth', options[0])
if gt_choice_for_charts == "Text":
gt_index_for_charts = 10 # Assuming "Text" is the 11th item (index 10)
gt_numeric_for_charts = None
else:
gt_index_for_charts = int(gt_choice_for_charts)
gt_numeric_for_charts = gt_index_for_charts
st.markdown("#### Input Probability Distribution")
df_dist = pd.DataFrame({"token": options, "probability": probs_for_charts.numpy()})
df_dist["type"] = ["Ground Truth" if token == gt_choice_for_charts else "Prediction" for token in options]
chart = (
alt.Chart(df_dist).mark_bar().encode(
x=alt.X("token:N", title="Token", sort=options), # Ensure consistent sort order
y=alt.Y("probability:Q", title="Probability", scale=alt.Scale(domain=[0, 1])),
color=alt.Color("type:N", scale=alt.Scale(domain=["Ground Truth", "Prediction"], range=["green", "steelblue"]), legend=alt.Legend(title="Token Type"))
).properties(height=300)
)
st.altair_chart(chart, use_container_width=True)
ce_loss = -torch.log(torch.clamp(probs_for_charts[gt_index_for_charts], min=1e-9))
if gt_numeric_for_charts is None: # Text token
ntl_mse_loss = torch.tensor(float('nan')) # MSE not applicable for text
ntl_was_loss = torch.tensor(float('nan')) # WAS not applicable for text
else: # Numeric token
numeric_probs_for_loss = probs_for_charts[:10] # Probabilities for 0-9
# Ensure numeric_probs_for_loss sums to 1 for NTL calculations if it's a subset
numeric_probs_sum = torch.sum(numeric_probs_for_loss)
if numeric_probs_sum > 1e-6 : # Avoid division by zero
normalized_numeric_probs = numeric_probs_for_loss / numeric_probs_sum
else:
normalized_numeric_probs = torch.zeros_like(numeric_probs_for_loss)
loss_values_tensor = torch.arange(0, 10, dtype=torch.float32)
# Use normalized probabilities for NTL if only considering numeric tokens
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6 :
pred_value = torch.sum( (probs_for_charts[:10]/torch.sum(probs_for_charts[:10])) * loss_values_tensor)
elif gt_choice_for_charts != "Text": # if sum is zero, pred_value is ill-defined or 0
pred_value = torch.tensor(0.0)
else: # Should not happen if gt_numeric_for_charts is not None
pred_value = torch.tensor(float('nan'))
if not torch.isnan(pred_value):
ntl_mse_loss = (pred_value - float(gt_numeric_for_charts)) ** 2
abs_diff = torch.abs(loss_values_tensor - float(gt_numeric_for_charts))
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
ntl_was_loss = torch.sum((probs_for_charts[:10]/torch.sum(probs_for_charts[:10])) * abs_diff)
elif gt_choice_for_charts != "Text":
ntl_was_loss = torch.tensor(0.0) # Or some other default if all numeric probs are zero
else:
ntl_was_loss = torch.tensor(float('nan'))
else:
ntl_mse_loss = torch.tensor(float('nan'))
ntl_was_loss = torch.tensor(float('nan'))
ce_val = round(ce_loss.item(), 3)
mse_val = round(ntl_mse_loss.item(), 3) if not torch.isnan(ntl_mse_loss) else "N/A"
was_val = round(ntl_was_loss.item(), 3) if not torch.isnan(ntl_was_loss) else "N/A"
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
if was_val != "N/A":
loss_data["Loss"].append("NTL-WAS")
loss_data["Value"].append(was_val)
if mse_val != "N/A":
loss_data["Loss"].append("NTL-MSE")
loss_data["Value"].append(mse_val)
loss_df = pd.DataFrame(loss_data)
# ============== Chart Display ==============
# Create a single chart for loss visualization
st.subheader("Loss Comparison")
# Create an Altair chart that will look good and redraw cleanly
chart = alt.Chart(loss_df).mark_bar().encode(
x=alt.X('Loss:N', sort=loss_df["Loss"].tolist()),
y=alt.Y('Value:Q', scale=alt.Scale(domain=[0, max(loss_df["Value"].max() * 1.2, 20 if st.session_state.running_demo else 0.5)])),
color=alt.Color('Loss:N', scale=alt.Scale(
domain=['Cross Entropy', 'NTL-WAS', 'NTL-MSE'],
range=['steelblue', 'red', 'forestgreen']
)),
tooltip=['Loss', 'Value']
).properties(
height=300
)
# Add value labels on top of bars
text = chart.mark_text(
align='center',
baseline='bottom',
dy=-5,
fontSize=14
).encode(
text=alt.Text('Value:Q', format='.3f')
)
# Combine chart and text
final_chart = (chart + text)
# Display chart with the full container width
st.altair_chart(final_chart, use_container_width=True)
# --- Polling Rerun for Demo Mode ---
# If the demo is running and we haven't just advanced (which would have caused a rerun),
# then we do a short sleep and rerun to keep the polling loop alive.
if st.session_state.running_demo:
# This check is implicitly: if we are here and demo is running, it means
# the time-based advance condition was NOT met in the block at the top.
time.sleep(0.1) # Adjusted from 0.2 to 0.5 (or try 1.0)
st.rerun()
# Add explanation of the demonstration
st.markdown("""
### What Does This Demo Show?
- **Cross Entropy Loss**: Only cares if the prediction is exactly right or wrong - it doesn't consider how "close" a numerical prediction is.
- **Number Token Loss (NTL)**: Considers numerical proximity - predicting "7" when the true value is "8" is better than predicting "2".
""")
# References / resources section with links (common to both modes)
st.markdown("### Resources")
st.markdown("""
- [Paper: Number Token Loss (ArXiv)](https://arxiv.org/abs/2411.02083)
- [GitHub: Number Token Loss](https://github.com/tum-ai/number-token-loss)
""")
|