NumberTokenLoss / src /streamlit_app.py
jannisborn's picture
update
0dc70d1 unverified
raw
history blame
17.6 kB
import logging
import time
import altair as alt
import numpy as np
import pandas as pd
import streamlit as st
import streamlit_vertical_slider as svs
import torch
from scenarios import dirac, gauss, make_bimodal_scenarios
logging.getLogger("streamlit.watcher.local_sources_watcher").setLevel(logging.ERROR)
DEMO_INTERVAL = 1.5
CE_SCALING = 0.25
MAX_LOSS_PLOT = 6
LAST_STEP = -1
# Define options globally as it's used in initialization and UI
options = [str(i) for i in range(10)] + ["Text"]
def compute_losses(probs: torch.Tensor, gt_token: str) -> tuple[float, float, float]:
"""Compute CE, NTL-MAE, NTL-WAS losses for the given probability vector and ground truth token."""
ce_loss = CE_SCALING * -torch.log(
torch.clamp(probs[options.index(gt_token)], min=1e-9)
)
numeric_mass = probs[:10].sum()
if gt_token == "Text" or numeric_mass < 1e-6:
return ce_loss.item(), 0.0, 0.0
gt_numeric = int(gt_token)
token_vals = torch.arange(10, dtype=torch.float32)
mae = numeric_mass * abs(torch.dot(token_vals, probs[:10]) - gt_numeric)
was = numeric_mass * torch.dot(probs[:10], torch.abs(token_vals - gt_numeric))
return round(ce_loss.item(), 3), round(mae.item(), 3), round(was.item(), 3)
# --- Session State Initialization ---
# Ensure all session state variables are initialized before first use, especially by widgets.
if "running_demo" not in st.session_state:
st.session_state.running_demo = False
if "demo_step" not in st.session_state:
st.session_state.demo_step = 0
if "last_update_time" not in st.session_state:
st.session_state.last_update_time = 0
if "loss_container" not in st.session_state:
st.session_state.loss_container = None
if "previous_chart_html" not in st.session_state:
st.session_state.previous_chart_html = ""
if "active_scenarios" not in st.session_state:
# default if you want one to load on first show
st.session_state.active_scenarios = dirac
if "loss_history" not in st.session_state:
st.session_state.loss_history = []
# Initialize states for sliders and ground_truth selector
# Using len(options) to correctly size for 0-9 + "Text"
for i in range(len(options)):
if f"slider_{i}" not in st.session_state:
st.session_state[f"slider_{i}"] = 0
if "ground_truth" not in st.session_state:
st.session_state["ground_truth"] = options[5]
if "manual_ground_truth" not in st.session_state:
st.session_state["manual_ground_truth"] = options[5]
if "demo_name" not in st.session_state:
st.session_state["demo_name"] = "Dirac"
st.title("NTL -- The Number Token Loss ๐Ÿš€")
st.markdown(
"""This is the interactive demo for our [ICML 2025](https://arxiv.org/abs/2411.02083) paper!๐ŸŽ‰
โžก๏ธ NTL augments cross-entropy to help LMs reason better with numbers ๐Ÿง 
"""
)
st.subheader("Demo 1 โ€” NTL vs. Cross Entropy in 3 Scenarios")
st.markdown("""
1๏ธโƒฃ Pick a ground truth token: a digit (0โ€“9) or "Text" ๐Ÿ“ (simulates generic text tokens).
2๏ธโƒฃ Choose a demo:
- **Dirac** โšก: All probability mass on one token.
- **Gaussian** ๐ŸŒŠ: Soft bell-curve around the true number.
- **Bimodal** ๐ŸŽฏ: Two peaks moving away from the target.
Watch how losses evolve as predictions get worse โ€” and see how NTL shines compared to CE! ๐ŸŒŸ
""")
if "ground_truth" not in st.session_state:
st.session_state["ground_truth"] = "4"
gt = st.selectbox("Ground Truth Token", options=options, key="ground_truth")
def apply_scenario(step_idx):
scenario = st.session_state.active_scenarios[step_idx]
for i, val in enumerate(scenario["values"]):
st.session_state[f"slider_{i}"] = val
def start_dirac_demo():
st.session_state.loss_history = []
st.session_state.active_scenarios = dirac
st.session_state.demo_name = "Dirac"
st.session_state.running_demo = True
st.session_state.demo_step = 0
st.session_state.last_update_time = time.time()
apply_scenario(0)
def start_gauss_demo():
st.session_state.loss_history = []
st.session_state.active_scenarios = gauss
st.session_state.demo_name = "Gauss"
st.session_state.running_demo = True
st.session_state.demo_step = 0
st.session_state.last_update_time = time.time()
apply_scenario(0)
def start_bimodal_demo():
st.session_state.loss_history = []
gt = st.session_state["ground_truth"]
st.session_state.active_scenarios = make_bimodal_scenarios(gt, options)
st.session_state.demo_name = f"Bimodal (GT={gt})"
st.session_state.running_demo = True
st.session_state.demo_step = 0
st.session_state.last_update_time = time.time()
apply_scenario(0)
def stop_demo():
st.session_state.running_demo = False
# --- Demo State Advancement Logic ---
# This block handles advancing the demo. If it advances, it updates session state
# and then reruns. This ensures widgets are drawn with the new state in the next run.
if st.session_state.running_demo:
scenario = st.session_state.active_scenarios
current_time = time.time()
if current_time - st.session_state.last_update_time > DEMO_INTERVAL:
# if we havenโ€™t yet shown the last scenario, advance
if st.session_state.demo_step < len(scenario) - 1:
st.session_state.demo_step += 1
apply_scenario(st.session_state.demo_step)
st.session_state.last_update_time = current_time
st.rerun()
else:
# we just displayed the final case โ†’ stop
st.session_state.running_demo = False
# --- UI Rendering ---
# This section renders the main UI. It executes after any potential rerun from the block above.
if st.session_state.running_demo:
st.info(
f"Showing scenario {st.session_state.demo_step + 1}"
f"/{len(st.session_state.active_scenarios)}: "
f"{st.session_state.active_scenarios[st.session_state.demo_step]['name']}"
)
if st.button("Stop Demo"):
st.session_state.running_demo = False
st.rerun()
else:
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Run: Dirac"):
start_dirac_demo()
st.rerun()
with col2:
if st.button("Run: Gauss"):
start_gauss_demo()
st.rerun()
with col3:
if st.button("Run: Bimodal"):
start_bimodal_demo()
st.rerun()
current_prob_values_from_state = [
st.session_state.get(f"slider_{j}", 0)
for j in range(len(options)) # 1.0 / len(options)) for j in range(len(options))
]
total_from_state = sum(current_prob_values_from_state)
probs_for_charts = (
torch.ones(len(options)) / len(options)
if total_from_state == 0
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
)
# Use manual GT token when not in running demo
gt_choice_for_charts = (
st.session_state["manual_ground_truth"]
if not st.session_state.running_demo
else st.session_state["ground_truth"]
)
if gt_choice_for_charts == "Text":
gt_index_for_charts = 10 # Assuming "Text" is the 11th item (index 10)
gt_numeric_for_charts = None
else:
gt_index_for_charts = int(gt_choice_for_charts)
gt_numeric_for_charts = gt_index_for_charts
gt = st.session_state["ground_truth"]
demo_name = st.session_state["demo_name"]
st.markdown(f"#### Predicted distribution โ€” ground truth: {gt}")
df_dist = pd.DataFrame(
{"token": options, "probability": probs_for_charts.numpy().round(2)}
)
df_dist["type"] = [
"Ground Truth" if token == gt_choice_for_charts else "Prediction"
for token in options
]
bars = (
alt.Chart(df_dist)
.mark_bar(color="dodgerblue", size=40)
.encode(
x=alt.X(
"token:N",
title="Token",
sort=options,
axis=alt.Axis(
labelAngle=0,
labelFontSize=14,
titleFontSize=16,
labelAlign="center",
labelFlush=False,
),
),
y=alt.Y(
"probability:Q",
title="Probability",
scale=alt.Scale(domain=[0, 1]),
axis=alt.Axis(format=".2f", labelFontSize=14, titleFontSize=16),
),
tooltip=[
alt.Tooltip("token:N", title="Token"),
alt.Tooltip("probability:Q", title="Predicted Prob.", format=".2f"),
],
)
)
bg_bar = pd.DataFrame({"token": [gt], "height": [1.0]})
gt_bar = (
alt.Chart(bg_bar)
.mark_bar(
color="darkgreen",
size=20,
opacity=0.3,
stroke="gray",
strokeWidth=2,
strokeDash=[4, 4],
)
.encode(
x=alt.X("token:N", sort=options),
y=alt.Y("height:Q", scale=alt.Scale(domain=[0, 1])),
tooltip=[
alt.Tooltip("token:N", title="Ground Truth"),
alt.Tooltip("height:Q", title="Desired mass", format=".2f"),
],
)
)
annot1 = (
alt.Chart(pd.DataFrame({"token": [gt]}))
.mark_text(
text="โฌ‡ Ground",
dy=-25, # 10px above the top of the bar
dx=25,
fontSize=14,
fontWeight="bold",
color="darkgreen",
)
.encode(x=alt.X("token:N", sort=options), y=alt.value(1))
)
annot2 = (
alt.Chart(pd.DataFrame({"token": [gt]}))
.mark_text(
text=f"truth={gt}",
dy=-10, # 25px above the top, so it sits above line 1
dx=35,
fontSize=14,
fontWeight="bold",
color="darkgreen",
)
.encode(x=alt.X("token:N", sort=options), y=alt.value(1))
)
# 4) Layer them in order: background, bars, annotation
final_chart = (gt_bar + bars + annot1 + annot2).properties(height=200)
st.altair_chart(final_chart, use_container_width=True)
ce_val, mae_val, was_val = compute_losses(probs_for_charts, gt_choice_for_charts)
if (
st.session_state.running_demo
and len(st.session_state.loss_history) < st.session_state.demo_step + 1
):
step = st.session_state.demo_step
scenario = st.session_state.active_scenarios[step]
ce, mae, was = compute_losses(probs_for_charts, gt_choice_for_charts)
# pick x_val differently for bimodal vs others
if st.session_state.demo_name.startswith("Bimodal"):
x_val = scenario["name"] # e.g. "(4,4)", "(3,5)", โ€ฆ
else:
# exactly like before:
best_idx = np.argmax(scenario["values"])
x_val = options[best_idx] # "0", "1", โ€ฆ, or "Text"
st.session_state.loss_history.append(
{
"step": step,
"x_val": x_val,
"Cross Entropy": ce,
"NTL-MAE": mae,
"NTL-WAS": was,
}
)
# 1) build a raw DF from histories
df = pd.DataFrame(st.session_state.loss_history)
if df.empty:
# define an empty "melted" DataFrame with the right columns
df_loss_plot = pd.DataFrame(columns=["step", "x_val", "Loss Type", "Loss Value"])
else:
# now it's safe to melt
df_loss_plot = df.melt(
id_vars=["step", "x_val"],
value_vars=["Cross Entropy", "NTL-MAE", "NTL-WAS"],
var_name="Loss Type",
value_name="Loss Value",
)
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
if was_val != "N/A":
loss_data["Loss"].append("NTL-WAS")
loss_data["Value"].append(was_val)
if mae_val != "N/A":
loss_data["Loss"].append("NTL-MAE")
loss_data["Value"].append(mae_val)
loss_df = pd.DataFrame(loss_data)
if st.session_state.demo_name.startswith("Bimodal"):
domain = [sc["name"] for sc in st.session_state.active_scenarios]
x_title = f"Offset from GT {st.session_state['ground_truth']}"
else:
domain = options
x_title = f"Maximum of predicted {st.session_state['demo_name']} distribution"
# ============== Chart Display ==============
st.markdown("#### Loss as a function of predicted distribution")
grouped_chart = (
alt.Chart(df_loss_plot)
.mark_bar()
.encode(
x=alt.X(
"x_val:N",
title=x_title,
sort=domain,
scale=alt.Scale(domain=domain),
axis=alt.Axis(labelAngle=0, labelFontSize=14, titleFontSize=16),
),
y=alt.Y(
"Loss Value:Q",
title="Loss Value",
scale=alt.Scale(domain=[0, MAX_LOSS_PLOT], nice=False, clamp=True),
axis=alt.Axis(labelFontSize=14, titleFontSize=16),
),
color=alt.Color(
"Loss Type:N",
scale=alt.Scale(
domain=["Cross Entropy", "NTL-WAS", "NTL-MAE"],
range=["red", "limegreen", "blueviolet"],
),
legend=alt.Legend(
title="",
orient="top",
direction="horizontal",
columns=3,
),
),
xOffset="Loss Type:N", # grouped bars
tooltip=[
alt.Tooltip("x_val:N", title="Scenario"),
alt.Tooltip("Loss Type:N", title="Loss Type"),
alt.Tooltip("Loss Value:Q", title="Value", format=".3f"),
],
)
.properties(height=250)
)
st.altair_chart(grouped_chart, use_container_width=True)
# Create a single chart for loss visualization
if not st.session_state.running_demo:
for i in range(len(options)):
st.session_state[f"slider_{i}"] = 0.0
st.session_state.demo_step = 0
st.subheader("Demo 2 -- Manual loss comparison")
st.subheader("๐Ÿงช Demo 2 โ€” Craft your own distribution")
st.markdown("""
This demo gives you more control but is harder to interpret. See it as a playground! ๐ŸŽจ
Manually adjust the sliders to change the predicted probabilities for each token.
The demo normalizes the values to form a valid probability distribution and calculates the losses.
๐Ÿ‘ฃ **Steps:**
- Use the **vertical sliders** to allocate probability to each token.
- Choose the correct **Ground Truth Token** (0โ€“9 or "Text" ๐Ÿ“œ).
- Observe how each loss function reacts.
๐Ÿ’ก **Tip:** Want to trick the loss? Try putting all mass on the wrong token or spread it wildly. See how NTL handles it! ๐Ÿ˜ˆ
""")
manual_gt = st.selectbox(
"Ground Truth Token",
options=options,
key="manual_ground_truth",
)
loss_df = pd.DataFrame(
{
"Loss": ["Cross Entropy", "NTL-MAE", "NTL-WAS"],
"Value": [ce_val, mae_val, was_val],
}
)
# Sliders and Ground Truth Selector
# These widgets will read their initial values from st.session_state.
# User interactions will update st.session_state directly due to their keys.
st.markdown("#### Adjust the predicted token probability")
cols = st.columns(len(options))
for i, col in enumerate(cols):
label = options[i] # Use token name directly for label
with col:
svs.vertical_slider(
label=label,
min_value=0.0,
max_value=1.0,
step=0.01,
height=50,
key=f"slider_{i}",
slider_color="green",
track_color="lightgray",
thumb_color="black",
)
chart = (
alt.Chart(loss_df)
.mark_bar()
.encode(
x=alt.X("Loss:N", sort=loss_df["Loss"].tolist()),
y=alt.Y(
"Value:Q",
scale=alt.Scale(
domain=[
0,
max(
loss_df["Value"].max() * 1.2,
20 if st.session_state.running_demo else 0.5,
),
]
),
),
color=alt.Color(
"Loss:N",
scale=alt.Scale(
domain=["Cross Entropy", "NTL-WAS", "NTL-MAE"],
range=["orangered", "limegreen", "blueviolet"],
),
),
tooltip=["Loss", "Value"],
)
.properties(height=300)
)
text = chart.mark_text(
align="center", baseline="bottom", dy=-5, fontSize=14
).encode(text=alt.Text("Value:Q", format=".3f"))
final_chart = chart + text
st.altair_chart(final_chart, use_container_width=True)
# # Add value labels on top of bars
# text = chart.mark_text(align="center", baseline="bottom", dy=-5, fontSize=14).encode(
# text=alt.Text("Value:Q", format=".3f")
# )
# # Combine chart and text
# final_chart = chart + text
# Display chart with the full container width
# st.altair_chart(final_chart, use_container_width=True)
# --- Polling Rerun for Demo Mode ---
# If the demo is running and we haven't just advanced (which would have caused a rerun),
# then we do a short sleep and rerun to keep the polling loop alive.
if st.session_state.running_demo:
# This check is implicitly: if we are here and demo is running, it means
# the time-based advance condition was NOT met in the block at the top.
time.sleep(0.1)
st.rerun()
st.markdown("""
### ๐Ÿค” TL;DR โ€” Why NTL?
Cross Entropy only cares if the prediction is exactly right or wrong โŒโœ… โ€” it doesnโ€™t care *how close* a guess is!
Thatโ€™s bad for LLMs doing math and numeric reasoning ๐Ÿงฎ.
๐Ÿ’ฅ NTL fixes that: it behaves like a regression loss on the token head, rewarding predictions that are numerically close.
""")
st.markdown("#### ๐Ÿ“š Further Resources")
st.markdown("""
- ๐Ÿ“„ [ICML 2025 Paper](https://arxiv.org/abs/2411.02083)
- ๐ŸŒ [NTL Landing Page](https://tum-ai.github.io/number-token-loss/)
- ๐Ÿ’ป [GitHub Code](https://github.com/tum-ai/number-token-loss)
""")