File size: 17,593 Bytes
0dc70d1
9914a10
 
e448593
9914a10
e448593
9914a10
d830963
 
9914a10
0dc70d1
 
 
9914a10
 
0dc70d1
 
9914a10
 
2bd2b96
 
 
 
0dc70d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
 
9914a10
2bd2b96
9914a10
2bd2b96
9914a10
2bd2b96
9914a10
2bd2b96
9914a10
2bd2b96
9914a10
 
 
 
 
2bd2b96
0dc70d1
2bd2b96
 
 
 
0dc70d1
9914a10
0dc70d1
 
 
 
 
2bd2b96
b958e0e
0dc70d1
e448593
9914a10
0dc70d1
 
9914a10
 
 
0dc70d1
 
 
 
 
 
 
 
 
 
 
 
 
9914a10
 
0dc70d1
e448593
2bd2b96
 
9914a10
2bd2b96
 
 
9914a10
 
0dc70d1
9914a10
0dc70d1
9914a10
 
 
 
 
 
 
0dc70d1
9914a10
0dc70d1
9914a10
 
 
 
 
 
 
0dc70d1
 
 
 
 
2bd2b96
 
 
9914a10
 
2bd2b96
 
 
 
9914a10
2bd2b96
 
 
 
9914a10
2bd2b96
9914a10
0dc70d1
 
 
 
 
 
 
 
 
2bd2b96
 
 
 
 
9914a10
 
 
 
 
2bd2b96
9914a10
2bd2b96
9914a10
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
9914a10
0dc70d1
 
9914a10
2bd2b96
 
 
 
 
 
e448593
0dc70d1
 
 
 
 
 
2bd2b96
9914a10
2bd2b96
d830963
2bd2b96
 
e448593
9914a10
0dc70d1
9914a10
0dc70d1
9914a10
 
 
 
 
 
 
 
 
 
0dc70d1
9914a10
 
 
 
 
0dc70d1
 
 
 
 
 
 
9914a10
 
 
 
 
 
 
 
 
0dc70d1
9914a10
 
 
0dc70d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9914a10
 
 
 
 
 
 
 
0dc70d1
9914a10
 
 
 
 
 
 
 
 
 
 
 
0dc70d1
9914a10
 
d830963
9914a10
 
0dc70d1
9914a10
 
0dc70d1
d830963
2bd2b96
0dc70d1
 
 
 
 
 
 
9914a10
0dc70d1
 
 
2bd2b96
0dc70d1
 
 
d830963
9914a10
 
0dc70d1
 
 
 
 
9914a10
 
0dc70d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9914a10
2bd2b96
 
 
 
0dc70d1
 
 
d830963
2bd2b96
 
0dc70d1
 
 
 
 
 
9914a10
 
0dc70d1
 
9914a10
0dc70d1
9914a10
 
 
 
 
 
0dc70d1
 
 
 
 
9914a10
 
0dc70d1
 
 
 
9914a10
0dc70d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9914a10
0dc70d1
9914a10
 
 
 
2bd2b96
0dc70d1
 
 
 
9914a10
0dc70d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bd2b96
0dc70d1
 
 
 
 
9914a10
2bd2b96
0dc70d1
 
 
 
9914a10
 
 
 
 
 
 
 
 
 
0dc70d1
9914a10
 
 
 
 
0dc70d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9914a10
2bd2b96
0dc70d1
 
 
 
 
 
 
2bd2b96
 
0dc70d1
2bd2b96
 
 
 
 
 
 
9914a10
2bd2b96
 
0dc70d1
2bd2b96
0dc70d1
 
 
2bd2b96
0dc70d1
2bd2b96
 
0dc70d1
2bd2b96
0dc70d1
 
 
2bd2b96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
import logging
import time

import altair as alt
import numpy as np
import pandas as pd
import streamlit as st
import streamlit_vertical_slider as svs
import torch

from scenarios import dirac, gauss, make_bimodal_scenarios

logging.getLogger("streamlit.watcher.local_sources_watcher").setLevel(logging.ERROR)

DEMO_INTERVAL = 1.5
CE_SCALING = 0.25
MAX_LOSS_PLOT = 6
LAST_STEP = -1


# Define options globally as it's used in initialization and UI
options = [str(i) for i in range(10)] + ["Text"]


def compute_losses(probs: torch.Tensor, gt_token: str) -> tuple[float, float, float]:
    """Compute CE, NTL-MAE, NTL-WAS losses for the given probability vector and ground truth token."""
    ce_loss = CE_SCALING * -torch.log(
        torch.clamp(probs[options.index(gt_token)], min=1e-9)
    )

    numeric_mass = probs[:10].sum()

    if gt_token == "Text" or numeric_mass < 1e-6:
        return ce_loss.item(), 0.0, 0.0

    gt_numeric = int(gt_token)
    token_vals = torch.arange(10, dtype=torch.float32)
    mae = numeric_mass * abs(torch.dot(token_vals, probs[:10]) - gt_numeric)
    was = numeric_mass * torch.dot(probs[:10], torch.abs(token_vals - gt_numeric))
    return round(ce_loss.item(), 3), round(mae.item(), 3), round(was.item(), 3)


# --- Session State Initialization ---
# Ensure all session state variables are initialized before first use, especially by widgets.
if "running_demo" not in st.session_state:
    st.session_state.running_demo = False
if "demo_step" not in st.session_state:
    st.session_state.demo_step = 0
if "last_update_time" not in st.session_state:
    st.session_state.last_update_time = 0
if "loss_container" not in st.session_state:
    st.session_state.loss_container = None
if "previous_chart_html" not in st.session_state:
    st.session_state.previous_chart_html = ""
if "active_scenarios" not in st.session_state:
    # default if you want one to load on first show
    st.session_state.active_scenarios = dirac
if "loss_history" not in st.session_state:
    st.session_state.loss_history = []


# Initialize states for sliders and ground_truth selector
# Using len(options) to correctly size for 0-9 + "Text"
for i in range(len(options)):
    if f"slider_{i}" not in st.session_state:
        st.session_state[f"slider_{i}"] = 0
if "ground_truth" not in st.session_state:
    st.session_state["ground_truth"] = options[5]
if "manual_ground_truth" not in st.session_state:
    st.session_state["manual_ground_truth"] = options[5]
if "demo_name" not in st.session_state:
    st.session_state["demo_name"] = "Dirac"


st.title("NTL -- The Number Token Loss ๐Ÿš€")

st.markdown(
    """This is the interactive demo for our [ICML 2025](https://arxiv.org/abs/2411.02083) paper!๐ŸŽ‰  
    โžก๏ธ NTL augments cross-entropy to help LMs reason better with numbers ๐Ÿง 
    """
)

st.subheader("Demo 1 โ€” NTL vs. Cross Entropy in 3 Scenarios")

st.markdown("""
1๏ธโƒฃ Pick a ground truth token: a digit (0โ€“9) or "Text" ๐Ÿ“ (simulates generic text tokens).  
2๏ธโƒฃ Choose a demo:
- **Dirac** โšก: All probability mass on one token.
- **Gaussian** ๐ŸŒŠ: Soft bell-curve around the true number.
- **Bimodal** ๐ŸŽฏ: Two peaks moving away from the target.

Watch how losses evolve as predictions get worse โ€” and see how NTL shines compared to CE! ๐ŸŒŸ
""")


if "ground_truth" not in st.session_state:
    st.session_state["ground_truth"] = "4"
gt = st.selectbox("Ground Truth Token", options=options, key="ground_truth")


def apply_scenario(step_idx):
    scenario = st.session_state.active_scenarios[step_idx]
    for i, val in enumerate(scenario["values"]):
        st.session_state[f"slider_{i}"] = val


def start_dirac_demo():
    st.session_state.loss_history = []
    st.session_state.active_scenarios = dirac
    st.session_state.demo_name = "Dirac"
    st.session_state.running_demo = True
    st.session_state.demo_step = 0
    st.session_state.last_update_time = time.time()
    apply_scenario(0)


def start_gauss_demo():
    st.session_state.loss_history = []
    st.session_state.active_scenarios = gauss
    st.session_state.demo_name = "Gauss"
    st.session_state.running_demo = True
    st.session_state.demo_step = 0
    st.session_state.last_update_time = time.time()
    apply_scenario(0)


def start_bimodal_demo():
    st.session_state.loss_history = []
    gt = st.session_state["ground_truth"]
    st.session_state.active_scenarios = make_bimodal_scenarios(gt, options)

    st.session_state.demo_name = f"Bimodal (GT={gt})"
    st.session_state.running_demo = True
    st.session_state.demo_step = 0
    st.session_state.last_update_time = time.time()
    apply_scenario(0)


def stop_demo():
    st.session_state.running_demo = False


# --- Demo State Advancement Logic ---
# This block handles advancing the demo. If it advances, it updates session state
# and then reruns. This ensures widgets are drawn with the new state in the next run.
if st.session_state.running_demo:
    scenario = st.session_state.active_scenarios
    current_time = time.time()
    if current_time - st.session_state.last_update_time > DEMO_INTERVAL:
        # if we havenโ€™t yet shown the last scenario, advance
        if st.session_state.demo_step < len(scenario) - 1:
            st.session_state.demo_step += 1
            apply_scenario(st.session_state.demo_step)
            st.session_state.last_update_time = current_time
            st.rerun()
        else:
            # we just displayed the final case โ†’ stop
            st.session_state.running_demo = False

# --- UI Rendering ---
# This section renders the main UI. It executes after any potential rerun from the block above.

if st.session_state.running_demo:
    st.info(
        f"Showing scenario {st.session_state.demo_step + 1}"
        f"/{len(st.session_state.active_scenarios)}: "
        f"{st.session_state.active_scenarios[st.session_state.demo_step]['name']}"
    )
    if st.button("Stop Demo"):
        st.session_state.running_demo = False
        st.rerun()
else:
    col1, col2, col3 = st.columns(3)
    with col1:
        if st.button("Run: Dirac"):
            start_dirac_demo()
            st.rerun()
    with col2:
        if st.button("Run: Gauss"):
            start_gauss_demo()
            st.rerun()
    with col3:
        if st.button("Run: Bimodal"):
            start_bimodal_demo()
            st.rerun()

current_prob_values_from_state = [
    st.session_state.get(f"slider_{j}", 0)
    for j in range(len(options))  # 1.0 / len(options)) for j in range(len(options))
]
total_from_state = sum(current_prob_values_from_state)
probs_for_charts = (
    torch.ones(len(options)) / len(options)
    if total_from_state == 0
    else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
)

# Use manual GT token when not in running demo
gt_choice_for_charts = (
    st.session_state["manual_ground_truth"]
    if not st.session_state.running_demo
    else st.session_state["ground_truth"]
)
if gt_choice_for_charts == "Text":
    gt_index_for_charts = 10  # Assuming "Text" is the 11th item (index 10)
    gt_numeric_for_charts = None
else:
    gt_index_for_charts = int(gt_choice_for_charts)
    gt_numeric_for_charts = gt_index_for_charts

gt = st.session_state["ground_truth"]
demo_name = st.session_state["demo_name"]

st.markdown(f"#### Predicted distribution โ€” ground truth: {gt}")
df_dist = pd.DataFrame(
    {"token": options, "probability": probs_for_charts.numpy().round(2)}
)
df_dist["type"] = [
    "Ground Truth" if token == gt_choice_for_charts else "Prediction"
    for token in options
]

bars = (
    alt.Chart(df_dist)
    .mark_bar(color="dodgerblue", size=40)
    .encode(
        x=alt.X(
            "token:N",
            title="Token",
            sort=options,
            axis=alt.Axis(
                labelAngle=0,
                labelFontSize=14,
                titleFontSize=16,
                labelAlign="center",
                labelFlush=False,
            ),
        ),
        y=alt.Y(
            "probability:Q",
            title="Probability",
            scale=alt.Scale(domain=[0, 1]),
            axis=alt.Axis(format=".2f", labelFontSize=14, titleFontSize=16),
        ),
        tooltip=[
            alt.Tooltip("token:N", title="Token"),
            alt.Tooltip("probability:Q", title="Predicted Prob.", format=".2f"),
        ],
    )
)

bg_bar = pd.DataFrame({"token": [gt], "height": [1.0]})
gt_bar = (
    alt.Chart(bg_bar)
    .mark_bar(
        color="darkgreen",
        size=20,
        opacity=0.3,
        stroke="gray",
        strokeWidth=2,
        strokeDash=[4, 4],
    )
    .encode(
        x=alt.X("token:N", sort=options),
        y=alt.Y("height:Q", scale=alt.Scale(domain=[0, 1])),
        tooltip=[
            alt.Tooltip("token:N", title="Ground Truth"),
            alt.Tooltip("height:Q", title="Desired mass", format=".2f"),
        ],
    )
)

annot1 = (
    alt.Chart(pd.DataFrame({"token": [gt]}))
    .mark_text(
        text="โฌ‡ Ground",
        dy=-25,  # 10px above the top of the bar
        dx=25,
        fontSize=14,
        fontWeight="bold",
        color="darkgreen",
    )
    .encode(x=alt.X("token:N", sort=options), y=alt.value(1))
)

annot2 = (
    alt.Chart(pd.DataFrame({"token": [gt]}))
    .mark_text(
        text=f"truth={gt}",
        dy=-10,  # 25px above the top, so it sits above line 1
        dx=35,
        fontSize=14,
        fontWeight="bold",
        color="darkgreen",
    )
    .encode(x=alt.X("token:N", sort=options), y=alt.value(1))
)

# 4) Layer them in order: background, bars, annotation
final_chart = (gt_bar + bars + annot1 + annot2).properties(height=200)

st.altair_chart(final_chart, use_container_width=True)
ce_val, mae_val, was_val = compute_losses(probs_for_charts, gt_choice_for_charts)


if (
    st.session_state.running_demo
    and len(st.session_state.loss_history) < st.session_state.demo_step + 1
):
    step = st.session_state.demo_step
    scenario = st.session_state.active_scenarios[step]
    ce, mae, was = compute_losses(probs_for_charts, gt_choice_for_charts)

    # pick x_val differently for bimodal vs others
    if st.session_state.demo_name.startswith("Bimodal"):
        x_val = scenario["name"]  # e.g. "(4,4)", "(3,5)", โ€ฆ
    else:
        # exactly like before:
        best_idx = np.argmax(scenario["values"])
        x_val = options[best_idx]  # "0", "1", โ€ฆ, or "Text"

    st.session_state.loss_history.append(
        {
            "step": step,
            "x_val": x_val,
            "Cross Entropy": ce,
            "NTL-MAE": mae,
            "NTL-WAS": was,
        }
    )


#  1) build a raw DF from histories
df = pd.DataFrame(st.session_state.loss_history)

if df.empty:
    # define an empty "melted" DataFrame with the right columns
    df_loss_plot = pd.DataFrame(columns=["step", "x_val", "Loss Type", "Loss Value"])
else:
    # now it's safe to melt
    df_loss_plot = df.melt(
        id_vars=["step", "x_val"],
        value_vars=["Cross Entropy", "NTL-MAE", "NTL-WAS"],
        var_name="Loss Type",
        value_name="Loss Value",
    )


loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
if was_val != "N/A":
    loss_data["Loss"].append("NTL-WAS")
    loss_data["Value"].append(was_val)
if mae_val != "N/A":
    loss_data["Loss"].append("NTL-MAE")
    loss_data["Value"].append(mae_val)

loss_df = pd.DataFrame(loss_data)

if st.session_state.demo_name.startswith("Bimodal"):
    domain = [sc["name"] for sc in st.session_state.active_scenarios]
    x_title = f"Offset from GT {st.session_state['ground_truth']}"
else:
    domain = options
    x_title = f"Maximum of predicted {st.session_state['demo_name']} distribution"


# ============== Chart Display ==============


st.markdown("#### Loss as a function of predicted distribution")

grouped_chart = (
    alt.Chart(df_loss_plot)
    .mark_bar()
    .encode(
        x=alt.X(
            "x_val:N",
            title=x_title,
            sort=domain,
            scale=alt.Scale(domain=domain),
            axis=alt.Axis(labelAngle=0, labelFontSize=14, titleFontSize=16),
        ),
        y=alt.Y(
            "Loss Value:Q",
            title="Loss Value",
            scale=alt.Scale(domain=[0, MAX_LOSS_PLOT], nice=False, clamp=True),
            axis=alt.Axis(labelFontSize=14, titleFontSize=16),
        ),
        color=alt.Color(
            "Loss Type:N",
            scale=alt.Scale(
                domain=["Cross Entropy", "NTL-WAS", "NTL-MAE"],
                range=["red", "limegreen", "blueviolet"],
            ),
            legend=alt.Legend(
                title="",
                orient="top",
                direction="horizontal",
                columns=3,
            ),
        ),
        xOffset="Loss Type:N",  # grouped bars
        tooltip=[
            alt.Tooltip("x_val:N", title="Scenario"),
            alt.Tooltip("Loss Type:N", title="Loss Type"),
            alt.Tooltip("Loss Value:Q", title="Value", format=".3f"),
        ],
    )
    .properties(height=250)
)
st.altair_chart(grouped_chart, use_container_width=True)


# Create a single chart for loss visualization
if not st.session_state.running_demo:
    for i in range(len(options)):
        st.session_state[f"slider_{i}"] = 0.0
    st.session_state.demo_step = 0

    st.subheader("Demo 2 -- Manual loss comparison")
    st.subheader("๐Ÿงช Demo 2 โ€” Craft your own distribution")
    st.markdown("""
    This demo gives you more control but is harder to interpret. See it as a playground! ๐ŸŽจ  
    Manually adjust the sliders to change the predicted probabilities for each token.
    The demo normalizes the values to form a valid probability distribution and calculates the losses. 

    ๐Ÿ‘ฃ **Steps:**
    - Use the **vertical sliders** to allocate probability to each token.
    - Choose the correct **Ground Truth Token** (0โ€“9 or "Text" ๐Ÿ“œ).
    - Observe how each loss function reacts.

    ๐Ÿ’ก **Tip:** Want to trick the loss? Try putting all mass on the wrong token or spread it wildly. See how NTL handles it! ๐Ÿ˜ˆ
    """)

    manual_gt = st.selectbox(
        "Ground Truth Token",
        options=options,
        key="manual_ground_truth",
    )

    loss_df = pd.DataFrame(
        {
            "Loss": ["Cross Entropy", "NTL-MAE", "NTL-WAS"],
            "Value": [ce_val, mae_val, was_val],
        }
    )

    # Sliders and Ground Truth Selector
    # These widgets will read their initial values from st.session_state.
    # User interactions will update st.session_state directly due to their keys.
    st.markdown("#### Adjust the predicted token probability")
    cols = st.columns(len(options))
    for i, col in enumerate(cols):
        label = options[i]  # Use token name directly for label
        with col:
            svs.vertical_slider(
                label=label,
                min_value=0.0,
                max_value=1.0,
                step=0.01,
                height=50,
                key=f"slider_{i}",
                slider_color="green",
                track_color="lightgray",
                thumb_color="black",
            )

    chart = (
        alt.Chart(loss_df)
        .mark_bar()
        .encode(
            x=alt.X("Loss:N", sort=loss_df["Loss"].tolist()),
            y=alt.Y(
                "Value:Q",
                scale=alt.Scale(
                    domain=[
                        0,
                        max(
                            loss_df["Value"].max() * 1.2,
                            20 if st.session_state.running_demo else 0.5,
                        ),
                    ]
                ),
            ),
            color=alt.Color(
                "Loss:N",
                scale=alt.Scale(
                    domain=["Cross Entropy", "NTL-WAS", "NTL-MAE"],
                    range=["orangered", "limegreen", "blueviolet"],
                ),
            ),
            tooltip=["Loss", "Value"],
        )
        .properties(height=300)
    )

    text = chart.mark_text(
        align="center", baseline="bottom", dy=-5, fontSize=14
    ).encode(text=alt.Text("Value:Q", format=".3f"))
    final_chart = chart + text
    st.altair_chart(final_chart, use_container_width=True)


# # Add value labels on top of bars
# text = chart.mark_text(align="center", baseline="bottom", dy=-5, fontSize=14).encode(
#     text=alt.Text("Value:Q", format=".3f")
# )

# # Combine chart and text
# final_chart = chart + text

# Display chart with the full container width
# st.altair_chart(final_chart, use_container_width=True)

# --- Polling Rerun for Demo Mode ---
# If the demo is running and we haven't just advanced (which would have caused a rerun),
# then we do a short sleep and rerun to keep the polling loop alive.
if st.session_state.running_demo:
    # This check is implicitly: if we are here and demo is running, it means
    # the time-based advance condition was NOT met in the block at the top.
    time.sleep(0.1)
    st.rerun()


st.markdown("""
### ๐Ÿค” TL;DR โ€” Why NTL?
Cross Entropy only cares if the prediction is exactly right or wrong โŒโœ… โ€” it doesnโ€™t care *how close* a guess is! 
Thatโ€™s bad for LLMs doing math and numeric reasoning ๐Ÿงฎ.

๐Ÿ’ฅ NTL fixes that: it behaves like a regression loss on the token head, rewarding predictions that are numerically close.
""")

st.markdown("#### ๐Ÿ“š Further Resources")
st.markdown("""
- ๐Ÿ“„ [ICML 2025 Paper](https://arxiv.org/abs/2411.02083)
- ๐ŸŒ [NTL Landing Page](https://tum-ai.github.io/number-token-loss/)
- ๐Ÿ’ป [GitHub Code](https://github.com/tum-ai/number-token-loss)
""")