jarif's picture
Update app.py
90c47ef verified
raw
history blame
3.13 kB
import streamlit as st
import os
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from ingest import create_chroma_db
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
checkpoint = "LaMini-T5-738M"
@st.cache_resource
def load_llm():
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
pipe = pipeline(
'text2text-generation',
model=model,
tokenizer=tokenizer,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95
)
return HuggingFacePipeline(pipeline=pipe)
def load_chroma_db():
chroma_dir = "chroma_db"
if not os.path.exists(chroma_dir):
st.warning("Chroma database not found. Creating a new one...")
create_chroma_db()
if not os.path.exists(chroma_dir):
st.error("Failed to create the Chroma database. Please check the 'docs' directory and try again.")
raise RuntimeError("Chroma database creation failed.")
try:
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
db = Chroma.load_local(chroma_dir, embeddings)
logger.info(f"Chroma database loaded successfully from {chroma_dir}")
return db.as_retriever()
except Exception as e:
st.error(f"Failed to load Chroma database: {e}")
logger.exception("Exception in load_chroma_db")
raise
def process_answer(instruction):
try:
retriever = load_chroma_db()
llm = load_llm()
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
generated_text = qa.invoke(instruction)
answer = generated_text['result']
return answer, generated_text
except Exception as e:
st.error(f"An error occurred while processing the answer: {e}")
logger.exception("Exception in process_answer")
return "An error occurred while processing your request.", {}
def main():
st.title("Search Your PDF πŸ“šπŸ“")
with st.expander("About the App"):
st.markdown(
"""
This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
"""
)
question = st.text_area("Enter your Question")
if st.button("Ask"):
st.info("Your Question: " + question)
st.info("Your Answer")
try:
answer, metadata = process_answer(question)
st.write(answer)
st.write(metadata)
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
logger.exception("Unexpected error in main function")
if __name__ == '__main__':
main()