jarif's picture
Update app.py
49c6974 verified
raw
history blame
3 kB
import os
import faiss
import logging
import streamlit as st
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
# Configure logging
logging.basicConfig(level=logging.DEBUG)
def load_faiss_index(index_path):
if not os.path.exists(index_path):
logging.error(f"FAISS index not found at {index_path}. Please create the index first.")
st.error(f"FAISS index not found at {index_path}. Please create the index first.")
raise FileNotFoundError(f"FAISS index not found at {index_path}.")
try:
logging.info(f"Attempting to load FAISS index from {index_path}.")
index = faiss.read_index(index_path)
logging.info("FAISS index loaded successfully.")
st.success("FAISS index loaded successfully.")
return index
except Exception as e:
logging.error(f"Failed to load FAISS index: {e}")
st.error(f"Failed to load FAISS index: {e}")
raise
def load_llm():
checkpoint = "LaMini-T5-738M"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
pipe = pipeline(
'text2text-generation',
model=model,
tokenizer=tokenizer,
max_length=256,
do_sample=True,
temperature=0.3,
top_p=0.95
)
return pipe
def process_answer(question):
index_path = 'faiss_index/index.faiss'
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
try:
faiss_index = load_faiss_index(index_path)
retriever = FAISS(index=faiss_index, embeddings=embeddings)
llm = load_llm()
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
result = qa.invoke(question)
answer = result['result']
return answer, result
except Exception as e:
logging.error(f"An error occurred while processing the answer: {e}")
st.error(f"An error occurred while processing the answer: {e}")
return "An error occurred while processing your request.", {}
def main():
st.title("Search Your PDF πŸ“šπŸ“")
with st.expander("About the App"):
st.markdown(
"""
This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
"""
)
question = st.text_area("Enter your Question")
if st.button("Ask"):
st.info("Your Question: " + question)
st.info("Your Answer")
try:
answer, metadata = process_answer(question)
st.write(answer)
st.write(metadata)
except Exception as e:
st.error(f"An unexpected error occurred: {e}")
if __name__ == '__main__':
main()