jarif's picture
Upload ingest.py
0f1d4a4 verified
raw
history blame
2.57 kB
import os
import logging
import streamlit as st
from langchain_community.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def create_faiss_index():
documents = []
docs_dir = "docs"
if not os.path.exists(docs_dir):
st.error(f"The directory '{docs_dir}' does not exist.")
return
for root, dirs, files in os.walk(docs_dir):
for file in files:
if file.endswith(".pdf"):
file_path = os.path.join(root, file)
st.info(f"Loading document: {file_path}")
try:
loader = PDFMinerLoader(file_path)
documents.extend(loader.load())
except Exception as e:
st.error(f"Error loading {file_path}: {e}")
if not documents:
st.error("No documents were loaded. Check the 'docs' directory and file paths.")
return
st.info(f"Loaded {len(documents)} documents.")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
if not texts:
st.error("No text chunks were created. Check the text splitting process.")
return
st.info(f"Created {len(texts)} text chunks.")
try:
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
except Exception as e:
st.error(f"Failed to initialize embeddings: {e}")
return
try:
db = FAISS.from_documents(texts, embeddings)
st.info(f"Created FAISS index with {len(texts)} vectors")
except Exception as e:
st.error(f"Failed to create FAISS index: {e}")
return
index_dir = "faiss_index"
if not os.path.exists(index_dir):
os.makedirs(index_dir)
try:
db.save_local(index_dir)
st.success(f"FAISS index successfully saved to {index_dir}")
index_path = os.path.join(index_dir, "index.faiss")
st.info(f"Index file size: {os.path.getsize(index_path)} bytes")
st.info(f"Index file permissions: {oct(os.stat(index_path).st_mode)[-3:]}")
except Exception as e:
st.error(f"Failed to save FAISS index: {e}")
if __name__ == "__main__":
create_faiss_index()