jarif's picture
Update ingest.py
c2d2148 verified
raw
history blame
2.84 kB
import os
import logging
import faiss
from langchain_community.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def create_faiss_index():
documents = []
docs_dir = "docs" # Directory where PDF files are stored
# Check if the 'docs' directory exists
if not os.path.exists(docs_dir):
logger.error(f"The directory '{docs_dir}' does not exist.")
return
# Walk through the 'docs' directory and load PDF files
for root, dirs, files in os.walk(docs_dir):
for file in files:
if file.endswith(".pdf"):
file_path = os.path.join(root, file)
logger.info(f"Loading document: {file_path}")
try:
loader = PDFMinerLoader(file_path)
loaded_docs = loader.load()
if loaded_docs:
logger.info(f"Loaded {len(loaded_docs)} documents from {file_path}")
documents.extend(loaded_docs)
else:
logger.warning(f"No documents loaded from {file_path}")
except Exception as e:
logger.error(f"Error loading {file_path}: {e}")
# Check if any documents were loaded
if not documents:
logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
return
logger.info(f"Loaded {len(documents)} documents.")
# Split documents into text chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
texts = text_splitter.split_documents(documents)
logger.info(f"Created {len(texts)} text chunks.")
# Check if text chunks were created
if not texts:
logger.error("No text chunks created. Check the text splitting process.")
return
try:
# Initialize embeddings using HuggingFace models
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
logger.info("Embeddings initialized successfully.")
except Exception as e:
logger.error(f"Failed to initialize embeddings: {e}")
return
try:
# Create a FAISS index and save it
index = faiss.IndexFlatL2(embeddings.embedding_size)
vector_store = FAISS.from_documents(texts, embeddings, index)
vector_store.save_local("faiss_index")
logger.info(f"Created FAISS index with {len(texts)} vectors.")
except Exception as e:
logger.error(f"Failed to create FAISS index: {e}")
if __name__ == "__main__":
create_faiss_index()