File size: 7,301 Bytes
690d2e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import streamlit as st
import numpy as np
import pandas as pd
import plotly.express as px
import pickle
from tensorflow.keras.models import load_model

# Streamlit page configuration
st.set_page_config(
    page_title="Power Consumption Predictor",
    layout="centered",
    initial_sidebar_state="collapsed"
)

# Custom CSS for eye-catching design
st.markdown("""

    <style>

    @import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');

    .main {background-color: #ffffff;}

    .stTitle {color: #003087; font-family: 'Roboto', sans-serif; text-align: center; margin-bottom: 10px; font-size: 32px; font-weight: 700;}

    .stSubheader {color: #003087; font-family: 'Roboto', sans-serif; font-size: 22px; font-weight: 700; margin-top: 10px; margin-bottom: 10px;}

    .stMarkdown {font-family: 'Roboto', sans-serif; color: #212529; font-size: 16px;}

    .stDataFrame {

        background-color: #ffffff;

        border-radius: 12px;

        padding: 15px;

        box-shadow: 0 4px 8px rgba(0,0,0,0.1);

    }

    .stButton>button {

        background-color: #007bff;

        color: white;

        border-radius: 10px;

        padding: 12px 30px;

        font-size: 18px;

        font-family: 'Roboto', sans-serif;

        font-weight: 700;

        display: block;

        margin: 15px auto;

        border: none;

        transition: all 0.3s ease;

    }

    .stButton>button:hover {

        background: linear-gradient(45deg, #0056b3, #007bff);

        transform: scale(1.05);

        box-shadow: 0 4px 8px rgba(0,0,0,0.2);

    }

    .stNumberInput label {

        color: #007bff;

        font-family: 'Roboto', sans-serif;

        font-weight: 700;

        font-size: 16px;

    }

    .stNumberInput input {

        background-color: #ffffff;

        color: #212529;

        border: 2px solid #007bff;

        border-radius: 8px;

        padding: 10px;

        font-family: 'Roboto', sans-serif;

        font-size: 14px;

        caret-color: #212529;

    }

    .stNumberInput input:focus {

        outline: none;

        border-color: #003087;

        box-shadow: 0 0 8px rgba(0,123,255,0.3);

    }

    </style>

""", unsafe_allow_html=True)

# Load model and scalers
try:
    model = load_model('my_model.keras')
    scaler_X = pickle.load(open('scaler_X.pkl', 'rb'))
    scaler_y = pickle.load(open('scaler_y.pkl', 'rb'))
except Exception as e:
    st.error(f"Failed to load model or scalers: {str(e)}. Ensure 'my_model.keras', 'scaler_X.pkl', and 'scaler_y.pkl' are in E:\\grid\\. "
             "This error may occur if the TensorFlow version used to save the model differs from your installed version. "
             "Try installing TensorFlow 2.17.0 or the version used to save the model (e.g., `pip install tensorflow==2.17.0`).")
    st.stop()

# Main app layout
st.title("Power Consumption Predictor")
st.markdown("""

    Enter values for one timestep to predict power consumption for Zone1, Zone2, and Zone3.  

    Results will be displayed as a vibrant bar plot and a clear table.

""")

# Input section
st.subheader("Enter Timestep Data")
st.markdown("""

    **Instructions**:

    - Enter values for the 8 features below (default values are provided).

    - **Hour**: 0 to 23 (e.g., 14 for 2 PM).

    - **DayOfWeek**: 0 to 6 (0 = Monday, 6 = Sunday).

    - **Month**: 1 to 12 (e.g., 7 for July).

    - **Other features**: Use reasonable values (e.g., Temperature in °C, Humidity as a fraction).

    - Click "Predict" to see results.

""")

# Vertical form for input
with st.container():
    feature_names = ['Hour', 'DayOfWeek', 'Month', 'Temperature', 'Humidity', 'WindSpeed', 'GeneralDiffuseFlows', 'DiffuseFlows']
    default_values = [0, 6, 1, 6.559, 73.8, 0.083, 0.051, 0.119]  # From dataset
    user_input = []
    for i, (name, default) in enumerate(zip(feature_names, default_values)):
        if name in ['Hour', 'DayOfWeek', 'Month']:
            value = st.number_input(
                f"{name}",
                min_value=0,
                max_value=23 if name == 'Hour' else 6 if name == 'DayOfWeek' else 12,
                value=int(default),
                step=1,
                key=f"input_{i}"
            )
            user_input.append(value)
        else:
            value = st.number_input(
                f"{name}",
                value=float(default),
                step=0.01,
                format="%.6f",
                key=f"input_{i}"
            )
            user_input.append(value)

# Predict button
if st.button("Predict", key="predict_button"):
    try:
        # Replicate input for 24 timesteps
        custom_raw_data = np.array([user_input] * 24).reshape(1, 24, 8)
        
        # Selective scaling
        features_to_scale = ['Temperature', 'Humidity', 'WindSpeed', 'GeneralDiffuseFlows', 'DiffuseFlows']
        scale_indices = [3, 4, 5, 6, 7]
        custom_scaled = custom_raw_data.copy()
        custom_2d_to_scale = custom_raw_data[:, :, scale_indices].reshape(-1, len(scale_indices))
        custom_scaled_2d = scaler_X.transform(custom_2d_to_scale)
        custom_scaled[:, :, scale_indices] = custom_scaled_2d.reshape(1, 24, len(scale_indices))

        # Predict
        y_pred_scaled = model.predict(custom_scaled)
        if isinstance(y_pred_scaled, list):
            y_pred_combined = np.concatenate(y_pred_scaled, axis=1)
        else:
            y_pred_combined = y_pred_scaled
        y_pred_original = scaler_y.inverse_transform(y_pred_combined)

        # Store predictions
        labels = ['PowerConsumption_Zone1', 'PowerConsumption_Zone2', 'PowerConsumption_Zone3']
        st.session_state.pred_df = pd.DataFrame(y_pred_original, columns=labels, index=['User Input'])
        st.session_state.predictions = y_pred_original

    except Exception as e:
        st.error(f"Error processing input: {str(e)}")

# Display predictions if available
if 'predictions' in st.session_state and st.session_state.predictions is not None:
    st.markdown("### Predicted Power Consumption")
    fig = px.bar(
        st.session_state.pred_df.reset_index().melt(id_vars='index', value_vars=labels, var_name='Zone', value_name='Power Consumption'),
        x='index', y='Power Consumption', color='Zone', barmode='group',
        title='Predicted Power Consumption by Zone',
        labels={'index': 'Sample', 'Power Consumption': 'Power Consumption (Original Scale)'},
        color_discrete_sequence=['#007bff', '#28a745', '#dc3545']
    )
    fig.update_layout(
        plot_bgcolor='white',
        paper_bgcolor='white',
        font=dict(family='Roboto', size=12, color='#212529'),
        title_font=dict(size=18, family='Roboto', color='#003087'),
        xaxis_title="Sample",
        yaxis_title="Power Consumption (Original Scale)",
        legend_title="Zones",
        margin=dict(l=40, r=40, t=60, b=40)
    )
    st.plotly_chart(fig, use_container_width=True)

    st.markdown("### Prediction Table")
    st.dataframe(st.session_state.pred_df.style.format("{:.4f}").set_caption("Predicted Power Consumption (Original Scale)"))

# Footer
st.markdown("---")
st.markdown("**Made by Sadik Al Jarif**")