ReCamMaster / diffsynth /pipelines /omnigen_image.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
from ..models.omnigen import OmniGenTransformer
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
from ..models.model_manager import ModelManager
from ..prompters.omnigen_prompter import OmniGenPrompter
from ..schedulers import FlowMatchScheduler
from .base import BasePipeline
from typing import Optional, Dict, Any, Tuple, List
from transformers.cache_utils import DynamicCache
import torch, os
from tqdm import tqdm
class OmniGenCache(DynamicCache):
def __init__(self,
num_tokens_for_img: int, offload_kv_cache: bool=False) -> None:
if not torch.cuda.is_available():
print("No available GPU, offload_kv_cache will be set to False, which will result in large memory usage and time cost when input multiple images!!!")
offload_kv_cache = False
raise RuntimeError("OffloadedCache can only be used with a GPU")
super().__init__()
self.original_device = []
self.prefetch_stream = torch.cuda.Stream()
self.num_tokens_for_img = num_tokens_for_img
self.offload_kv_cache = offload_kv_cache
def prefetch_layer(self, layer_idx: int):
"Starts prefetching the next layer cache"
if layer_idx < len(self):
with torch.cuda.stream(self.prefetch_stream):
# Prefetch next layer tensors to GPU
device = self.original_device[layer_idx]
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True)
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True)
def evict_previous_layer(self, layer_idx: int):
"Moves the previous layer cache to the CPU"
if len(self) > 2:
# We do it on the default stream so it occurs after all earlier computations on these tensors are done
if layer_idx == 0:
prev_layer_idx = -1
else:
prev_layer_idx = (layer_idx - 1) % len(self)
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
if layer_idx < len(self):
if self.offload_kv_cache:
# Evict the previous layer if necessary
torch.cuda.current_stream().synchronize()
self.evict_previous_layer(layer_idx)
# Load current layer cache to its original device if not already there
original_device = self.original_device[layer_idx]
# self.prefetch_stream.synchronize(original_device)
torch.cuda.synchronize(self.prefetch_stream)
key_tensor = self.key_cache[layer_idx]
value_tensor = self.value_cache[layer_idx]
# Prefetch the next layer
self.prefetch_layer((layer_idx + 1) % len(self))
else:
key_tensor = self.key_cache[layer_idx]
value_tensor = self.value_cache[layer_idx]
return (key_tensor, value_tensor)
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the cache
if len(self.key_cache) < layer_idx:
raise ValueError("OffloadedCache does not support model usage where layers are skipped. Use DynamicCache.")
elif len(self.key_cache) == layer_idx:
# only cache the states for condition tokens
key_states = key_states[..., :-(self.num_tokens_for_img+1), :]
value_states = value_states[..., :-(self.num_tokens_for_img+1), :]
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
self.key_cache.append(key_states)
self.value_cache.append(value_states)
self.original_device.append(key_states.device)
if self.offload_kv_cache:
self.evict_previous_layer(layer_idx)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
else:
# only cache the states for condition tokens
key_tensor, value_tensor = self[layer_idx]
k = torch.cat([key_tensor, key_states], dim=-2)
v = torch.cat([value_tensor, value_states], dim=-2)
return k, v
class OmnigenImagePipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = FlowMatchScheduler(num_train_timesteps=1, shift=1, inverse_timesteps=True, sigma_min=0, sigma_max=1)
# models
self.vae_decoder: SDXLVAEDecoder = None
self.vae_encoder: SDXLVAEEncoder = None
self.transformer: OmniGenTransformer = None
self.prompter: OmniGenPrompter = None
self.model_names = ['transformer', 'vae_decoder', 'vae_encoder']
def denoising_model(self):
return self.transformer
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]):
# Main models
self.transformer, model_path = model_manager.fetch_model("omnigen_transformer", require_model_path=True)
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder")
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder")
self.prompter = OmniGenPrompter.from_pretrained(os.path.dirname(model_path))
@staticmethod
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None):
pipe = OmnigenImagePipeline(
device=model_manager.device if device is None else device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_models(model_manager, prompt_refiner_classes=[])
return pipe
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def encode_images(self, images, tiled=False, tile_size=64, tile_stride=32):
latents = [self.encode_image(image.to(device=self.device), tiled, tile_size, tile_stride).to(self.torch_dtype) for image in images]
return latents
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
image = self.vae_output_to_image(image)
return image
def encode_prompt(self, prompt, clip_skip=1, positive=True):
prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive)
return {"encoder_hidden_states": prompt_emb}
def prepare_extra_input(self, latents=None):
return {}
def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img):
if isinstance(position_ids, list):
for i in range(len(position_ids)):
position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):]
else:
position_ids = position_ids[:, -(num_tokens_for_img+1):]
return position_ids
def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img):
if isinstance(attention_mask, list):
return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask]
return attention_mask[..., -(num_tokens_for_img+1):, :]
@torch.no_grad()
def __call__(
self,
prompt,
reference_images=[],
cfg_scale=2.0,
image_cfg_scale=2.0,
use_kv_cache=True,
offload_kv_cache=True,
input_image=None,
denoising_strength=1.0,
height=1024,
width=1024,
num_inference_steps=20,
tiled=False,
tile_size=64,
tile_stride=32,
seed=None,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
height, width = self.check_resize_height_width(height, width)
# Tiler parameters
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if input_image is not None:
self.load_models_to_device(['vae_encoder'])
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
latents = self.encode_image(image, **tiler_kwargs)
noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
latents = latents.repeat(3, 1, 1, 1)
# Encode prompts
input_data = self.prompter(prompt, reference_images, height=height, width=width, use_img_cfg=True, separate_cfg_input=True, use_input_image_size_as_output=False)
# Encode images
reference_latents = [self.encode_images(images, **tiler_kwargs) for images in input_data['input_pixel_values']]
# Pack all parameters
model_kwargs = dict(input_ids=[input_ids.to(self.device) for input_ids in input_data['input_ids']],
input_img_latents=reference_latents,
input_image_sizes=input_data['input_image_sizes'],
attention_mask=[attention_mask.to(self.device) for attention_mask in input_data["attention_mask"]],
position_ids=[position_ids.to(self.device) for position_ids in input_data["position_ids"]],
cfg_scale=cfg_scale,
img_cfg_scale=image_cfg_scale,
use_img_cfg=True,
use_kv_cache=use_kv_cache,
offload_model=False,
)
# Denoise
self.load_models_to_device(['transformer'])
cache = [OmniGenCache(latents.size(-1)*latents.size(-2) // 4, offload_kv_cache) for _ in range(len(model_kwargs['input_ids']))] if use_kv_cache else None
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).repeat(latents.shape[0]).to(self.device)
# Forward
noise_pred, cache = self.transformer.forward_with_separate_cfg(latents, timestep, past_key_values=cache, **model_kwargs)
# Scheduler
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# Update KV cache
if progress_id == 0 and use_kv_cache:
num_tokens_for_img = latents.size(-1)*latents.size(-2) // 4
if isinstance(cache, list):
model_kwargs['input_ids'] = [None] * len(cache)
else:
model_kwargs['input_ids'] = None
model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img)
model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
del cache
self.load_models_to_device(['vae_decoder'])
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
# offload all models
self.load_models_to_device([])
return image