Spaces:
Running
on
L40S
Running
on
L40S
from ..models.omnigen import OmniGenTransformer | |
from ..models.sdxl_vae_encoder import SDXLVAEEncoder | |
from ..models.sdxl_vae_decoder import SDXLVAEDecoder | |
from ..models.model_manager import ModelManager | |
from ..prompters.omnigen_prompter import OmniGenPrompter | |
from ..schedulers import FlowMatchScheduler | |
from .base import BasePipeline | |
from typing import Optional, Dict, Any, Tuple, List | |
from transformers.cache_utils import DynamicCache | |
import torch, os | |
from tqdm import tqdm | |
class OmniGenCache(DynamicCache): | |
def __init__(self, | |
num_tokens_for_img: int, offload_kv_cache: bool=False) -> None: | |
if not torch.cuda.is_available(): | |
print("No available GPU, offload_kv_cache will be set to False, which will result in large memory usage and time cost when input multiple images!!!") | |
offload_kv_cache = False | |
raise RuntimeError("OffloadedCache can only be used with a GPU") | |
super().__init__() | |
self.original_device = [] | |
self.prefetch_stream = torch.cuda.Stream() | |
self.num_tokens_for_img = num_tokens_for_img | |
self.offload_kv_cache = offload_kv_cache | |
def prefetch_layer(self, layer_idx: int): | |
"Starts prefetching the next layer cache" | |
if layer_idx < len(self): | |
with torch.cuda.stream(self.prefetch_stream): | |
# Prefetch next layer tensors to GPU | |
device = self.original_device[layer_idx] | |
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True) | |
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True) | |
def evict_previous_layer(self, layer_idx: int): | |
"Moves the previous layer cache to the CPU" | |
if len(self) > 2: | |
# We do it on the default stream so it occurs after all earlier computations on these tensors are done | |
if layer_idx == 0: | |
prev_layer_idx = -1 | |
else: | |
prev_layer_idx = (layer_idx - 1) % len(self) | |
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True) | |
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True) | |
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]: | |
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer." | |
if layer_idx < len(self): | |
if self.offload_kv_cache: | |
# Evict the previous layer if necessary | |
torch.cuda.current_stream().synchronize() | |
self.evict_previous_layer(layer_idx) | |
# Load current layer cache to its original device if not already there | |
original_device = self.original_device[layer_idx] | |
# self.prefetch_stream.synchronize(original_device) | |
torch.cuda.synchronize(self.prefetch_stream) | |
key_tensor = self.key_cache[layer_idx] | |
value_tensor = self.value_cache[layer_idx] | |
# Prefetch the next layer | |
self.prefetch_layer((layer_idx + 1) % len(self)) | |
else: | |
key_tensor = self.key_cache[layer_idx] | |
value_tensor = self.value_cache[layer_idx] | |
return (key_tensor, value_tensor) | |
else: | |
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") | |
def update( | |
self, | |
key_states: torch.Tensor, | |
value_states: torch.Tensor, | |
layer_idx: int, | |
cache_kwargs: Optional[Dict[str, Any]] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. | |
Parameters: | |
key_states (`torch.Tensor`): | |
The new key states to cache. | |
value_states (`torch.Tensor`): | |
The new value states to cache. | |
layer_idx (`int`): | |
The index of the layer to cache the states for. | |
cache_kwargs (`Dict[str, Any]`, `optional`): | |
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`. | |
Return: | |
A tuple containing the updated key and value states. | |
""" | |
# Update the cache | |
if len(self.key_cache) < layer_idx: | |
raise ValueError("OffloadedCache does not support model usage where layers are skipped. Use DynamicCache.") | |
elif len(self.key_cache) == layer_idx: | |
# only cache the states for condition tokens | |
key_states = key_states[..., :-(self.num_tokens_for_img+1), :] | |
value_states = value_states[..., :-(self.num_tokens_for_img+1), :] | |
# Update the number of seen tokens | |
if layer_idx == 0: | |
self._seen_tokens += key_states.shape[-2] | |
self.key_cache.append(key_states) | |
self.value_cache.append(value_states) | |
self.original_device.append(key_states.device) | |
if self.offload_kv_cache: | |
self.evict_previous_layer(layer_idx) | |
return self.key_cache[layer_idx], self.value_cache[layer_idx] | |
else: | |
# only cache the states for condition tokens | |
key_tensor, value_tensor = self[layer_idx] | |
k = torch.cat([key_tensor, key_states], dim=-2) | |
v = torch.cat([value_tensor, value_states], dim=-2) | |
return k, v | |
class OmnigenImagePipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = FlowMatchScheduler(num_train_timesteps=1, shift=1, inverse_timesteps=True, sigma_min=0, sigma_max=1) | |
# models | |
self.vae_decoder: SDXLVAEDecoder = None | |
self.vae_encoder: SDXLVAEEncoder = None | |
self.transformer: OmniGenTransformer = None | |
self.prompter: OmniGenPrompter = None | |
self.model_names = ['transformer', 'vae_decoder', 'vae_encoder'] | |
def denoising_model(self): | |
return self.transformer | |
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): | |
# Main models | |
self.transformer, model_path = model_manager.fetch_model("omnigen_transformer", require_model_path=True) | |
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder") | |
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder") | |
self.prompter = OmniGenPrompter.from_pretrained(os.path.dirname(model_path)) | |
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None): | |
pipe = OmnigenImagePipeline( | |
device=model_manager.device if device is None else device, | |
torch_dtype=model_manager.torch_dtype, | |
) | |
pipe.fetch_models(model_manager, prompt_refiner_classes=[]) | |
return pipe | |
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): | |
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return latents | |
def encode_images(self, images, tiled=False, tile_size=64, tile_stride=32): | |
latents = [self.encode_image(image.to(device=self.device), tiled, tile_size, tile_stride).to(self.torch_dtype) for image in images] | |
return latents | |
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
image = self.vae_output_to_image(image) | |
return image | |
def encode_prompt(self, prompt, clip_skip=1, positive=True): | |
prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive) | |
return {"encoder_hidden_states": prompt_emb} | |
def prepare_extra_input(self, latents=None): | |
return {} | |
def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img): | |
if isinstance(position_ids, list): | |
for i in range(len(position_ids)): | |
position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):] | |
else: | |
position_ids = position_ids[:, -(num_tokens_for_img+1):] | |
return position_ids | |
def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img): | |
if isinstance(attention_mask, list): | |
return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask] | |
return attention_mask[..., -(num_tokens_for_img+1):, :] | |
def __call__( | |
self, | |
prompt, | |
reference_images=[], | |
cfg_scale=2.0, | |
image_cfg_scale=2.0, | |
use_kv_cache=True, | |
offload_kv_cache=True, | |
input_image=None, | |
denoising_strength=1.0, | |
height=1024, | |
width=1024, | |
num_inference_steps=20, | |
tiled=False, | |
tile_size=64, | |
tile_stride=32, | |
seed=None, | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
height, width = self.check_resize_height_width(height, width) | |
# Tiler parameters | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
# Prepare scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# Prepare latent tensors | |
if input_image is not None: | |
self.load_models_to_device(['vae_encoder']) | |
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) | |
latents = self.encode_image(image, **tiler_kwargs) | |
noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
else: | |
latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) | |
latents = latents.repeat(3, 1, 1, 1) | |
# Encode prompts | |
input_data = self.prompter(prompt, reference_images, height=height, width=width, use_img_cfg=True, separate_cfg_input=True, use_input_image_size_as_output=False) | |
# Encode images | |
reference_latents = [self.encode_images(images, **tiler_kwargs) for images in input_data['input_pixel_values']] | |
# Pack all parameters | |
model_kwargs = dict(input_ids=[input_ids.to(self.device) for input_ids in input_data['input_ids']], | |
input_img_latents=reference_latents, | |
input_image_sizes=input_data['input_image_sizes'], | |
attention_mask=[attention_mask.to(self.device) for attention_mask in input_data["attention_mask"]], | |
position_ids=[position_ids.to(self.device) for position_ids in input_data["position_ids"]], | |
cfg_scale=cfg_scale, | |
img_cfg_scale=image_cfg_scale, | |
use_img_cfg=True, | |
use_kv_cache=use_kv_cache, | |
offload_model=False, | |
) | |
# Denoise | |
self.load_models_to_device(['transformer']) | |
cache = [OmniGenCache(latents.size(-1)*latents.size(-2) // 4, offload_kv_cache) for _ in range(len(model_kwargs['input_ids']))] if use_kv_cache else None | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).repeat(latents.shape[0]).to(self.device) | |
# Forward | |
noise_pred, cache = self.transformer.forward_with_separate_cfg(latents, timestep, past_key_values=cache, **model_kwargs) | |
# Scheduler | |
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
# Update KV cache | |
if progress_id == 0 and use_kv_cache: | |
num_tokens_for_img = latents.size(-1)*latents.size(-2) // 4 | |
if isinstance(cache, list): | |
model_kwargs['input_ids'] = [None] * len(cache) | |
else: | |
model_kwargs['input_ids'] = None | |
model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img) | |
model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img) | |
# UI | |
if progress_bar_st is not None: | |
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
# Decode image | |
del cache | |
self.load_models_to_device(['vae_decoder']) | |
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
# offload all models | |
self.load_models_to_device([]) | |
return image | |