Spaces:
Running
on
L40S
Running
on
L40S
from ..models import ModelManager | |
from ..models.wan_video_dit import WanModel | |
from ..models.wan_video_text_encoder import WanTextEncoder | |
from ..models.wan_video_vae import WanVideoVAE | |
from ..models.wan_video_image_encoder import WanImageEncoder | |
from ..schedulers.flow_match import FlowMatchScheduler | |
from .base import BasePipeline | |
from ..prompters import WanPrompter | |
import torch, os | |
from einops import rearrange | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from typing import Optional | |
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear | |
from ..models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm | |
from ..models.wan_video_dit import RMSNorm, sinusoidal_embedding_1d | |
from ..models.wan_video_vae import RMS_norm, CausalConv3d, Upsample | |
class WanVideoPipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True) | |
self.prompter = WanPrompter(tokenizer_path=tokenizer_path) | |
self.text_encoder: WanTextEncoder = None | |
self.image_encoder: WanImageEncoder = None | |
self.dit: WanModel = None | |
self.vae: WanVideoVAE = None | |
self.model_names = ['text_encoder', 'dit', 'vae'] | |
self.height_division_factor = 16 | |
self.width_division_factor = 16 | |
def enable_vram_management(self, num_persistent_param_in_dit=None): | |
dtype = next(iter(self.text_encoder.parameters())).dtype | |
enable_vram_management( | |
self.text_encoder, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Embedding: AutoWrappedModule, | |
T5RelativeEmbedding: AutoWrappedModule, | |
T5LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.dit.parameters())).dtype | |
enable_vram_management( | |
self.dit, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv3d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
RMSNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
max_num_param=num_persistent_param_in_dit, | |
overflow_module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.vae.parameters())).dtype | |
enable_vram_management( | |
self.vae, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
RMS_norm: AutoWrappedModule, | |
CausalConv3d: AutoWrappedModule, | |
Upsample: AutoWrappedModule, | |
torch.nn.SiLU: AutoWrappedModule, | |
torch.nn.Dropout: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
if self.image_encoder is not None: | |
dtype = next(iter(self.image_encoder.parameters())).dtype | |
enable_vram_management( | |
self.image_encoder, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=dtype, | |
computation_device=self.device, | |
), | |
) | |
self.enable_cpu_offload() | |
def fetch_models(self, model_manager: ModelManager): | |
text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True) | |
if text_encoder_model_and_path is not None: | |
self.text_encoder, tokenizer_path = text_encoder_model_and_path | |
self.prompter.fetch_models(self.text_encoder) | |
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl")) | |
self.dit = model_manager.fetch_model("wan_video_dit") | |
self.vae = model_manager.fetch_model("wan_video_vae") | |
self.image_encoder = model_manager.fetch_model("wan_video_image_encoder") | |
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None): | |
if device is None: device = model_manager.device | |
if torch_dtype is None: torch_dtype = model_manager.torch_dtype | |
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype) | |
pipe.fetch_models(model_manager) | |
return pipe | |
def denoising_model(self): | |
return self.dit | |
def encode_prompt(self, prompt, positive=True): | |
prompt_emb = self.prompter.encode_prompt(prompt, positive=positive) | |
return {"context": prompt_emb} | |
def encode_image(self, image, num_frames, height, width): | |
image = self.preprocess_image(image.resize((width, height))).to(self.device) | |
clip_context = self.image_encoder.encode_image([image]) | |
msk = torch.ones(1, num_frames, height//8, width//8, device=self.device) | |
msk[:, 1:] = 0 | |
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) | |
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) | |
msk = msk.transpose(1, 2)[0] | |
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1) | |
y = self.vae.encode([vae_input.to(dtype=self.torch_dtype, device=self.device)], device=self.device)[0] | |
y = torch.concat([msk, y]) | |
y = y.unsqueeze(0) | |
clip_context = clip_context.to(dtype=self.torch_dtype, device=self.device) | |
y = y.to(dtype=self.torch_dtype, device=self.device) | |
return {"clip_feature": clip_context, "y": y} | |
def tensor2video(self, frames): | |
frames = rearrange(frames, "C T H W -> T H W C") | |
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def prepare_extra_input(self, latents=None): | |
return {} | |
def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return latents | |
def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return frames | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
input_image=None, | |
input_video=None, | |
denoising_strength=1.0, | |
seed=None, | |
rand_device="cpu", | |
height=480, | |
width=832, | |
num_frames=81, | |
cfg_scale=5.0, | |
num_inference_steps=50, | |
sigma_shift=5.0, | |
tiled=True, | |
tile_size=(30, 52), | |
tile_stride=(15, 26), | |
tea_cache_l1_thresh=None, | |
tea_cache_model_id="", | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
# Parameter check | |
height, width = self.check_resize_height_width(height, width) | |
if num_frames % 4 != 1: | |
num_frames = (num_frames + 2) // 4 * 4 + 1 | |
print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.") | |
# Tiler parameters | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
# Scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift) | |
# Initialize noise | |
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32) | |
noise = noise.to(dtype=self.torch_dtype, device=self.device) | |
if input_video is not None: | |
self.load_models_to_device(['vae']) | |
input_video = self.preprocess_images(input_video) | |
input_video = torch.stack(input_video, dim=2).to(dtype=self.torch_dtype, device=self.device) | |
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
else: | |
latents = noise | |
# Encode prompts | |
self.load_models_to_device(["text_encoder"]) | |
prompt_emb_posi = self.encode_prompt(prompt, positive=True) | |
if cfg_scale != 1.0: | |
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
# Encode image | |
if input_image is not None and self.image_encoder is not None: | |
self.load_models_to_device(["image_encoder", "vae"]) | |
image_emb = self.encode_image(input_image, num_frames, height, width) | |
else: | |
image_emb = {} | |
# Extra input | |
extra_input = self.prepare_extra_input(latents) | |
# TeaCache | |
tea_cache_posi = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None} | |
tea_cache_nega = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None} | |
# Denoise | |
self.load_models_to_device(["dit"]) | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) | |
# Inference | |
noise_pred_posi = model_fn_wan_video(self.dit, latents, timestep=timestep, **prompt_emb_posi, **image_emb, **extra_input, **tea_cache_posi) | |
if cfg_scale != 1.0: | |
noise_pred_nega = model_fn_wan_video(self.dit, latents, timestep=timestep, **prompt_emb_nega, **image_emb, **extra_input, **tea_cache_nega) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
else: | |
noise_pred = noise_pred_posi | |
# Scheduler | |
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
# Decode | |
self.load_models_to_device(['vae']) | |
frames = self.decode_video(latents, **tiler_kwargs) | |
self.load_models_to_device([]) | |
frames = self.tensor2video(frames[0]) | |
return frames | |
class TeaCache: | |
def __init__(self, num_inference_steps, rel_l1_thresh, model_id): | |
self.num_inference_steps = num_inference_steps | |
self.step = 0 | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = None | |
self.rel_l1_thresh = rel_l1_thresh | |
self.previous_residual = None | |
self.previous_hidden_states = None | |
self.coefficients_dict = { | |
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02], | |
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01], | |
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01], | |
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02], | |
} | |
if model_id not in self.coefficients_dict: | |
supported_model_ids = ", ".join([i for i in self.coefficients_dict]) | |
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).") | |
self.coefficients = self.coefficients_dict[model_id] | |
def check(self, dit: WanModel, x, t_mod): | |
modulated_inp = t_mod.clone() | |
if self.step == 0 or self.step == self.num_inference_steps - 1: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
else: | |
coefficients = self.coefficients | |
rescale_func = np.poly1d(coefficients) | |
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) | |
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: | |
should_calc = False | |
else: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = modulated_inp | |
self.step += 1 | |
if self.step == self.num_inference_steps: | |
self.step = 0 | |
if should_calc: | |
self.previous_hidden_states = x.clone() | |
return not should_calc | |
def store(self, hidden_states): | |
self.previous_residual = hidden_states - self.previous_hidden_states | |
self.previous_hidden_states = None | |
def update(self, hidden_states): | |
hidden_states = hidden_states + self.previous_residual | |
return hidden_states | |
def model_fn_wan_video( | |
dit: WanModel, | |
x: torch.Tensor, | |
timestep: torch.Tensor, | |
context: torch.Tensor, | |
clip_feature: Optional[torch.Tensor] = None, | |
y: Optional[torch.Tensor] = None, | |
tea_cache: TeaCache = None, | |
**kwargs, | |
): | |
t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep)) | |
t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim)) | |
context = dit.text_embedding(context) | |
if dit.has_image_input: | |
x = torch.cat([x, y], dim=1) # (b, c_x + c_y, f, h, w) | |
clip_embdding = dit.img_emb(clip_feature) | |
context = torch.cat([clip_embdding, context], dim=1) | |
x, (f, h, w) = dit.patchify(x) | |
freqs = torch.cat([ | |
dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) | |
], dim=-1).reshape(f * h * w, 1, -1).to(x.device) | |
# TeaCache | |
if tea_cache is not None: | |
tea_cache_update = tea_cache.check(dit, x, t_mod) | |
else: | |
tea_cache_update = False | |
if tea_cache_update: | |
x = tea_cache.update(x) | |
else: | |
# blocks | |
for block in dit.blocks: | |
x = block(x, context, t_mod, freqs) | |
if tea_cache is not None: | |
tea_cache.store(x) | |
x = dit.head(x, t) | |
x = dit.unpatchify(x, (f, h, w)) | |
return x | |