jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
import datetime
import os
import pathlib
import shutil
import time
from typing import Any, Callable, Dict, Optional
import torch
from diffusers.utils import is_accelerate_available
from finetrainers.logging import get_logger
from finetrainers.utils import get_device_info
from .base import BaseCheckpointer, BaseParallelBackend
if not is_accelerate_available():
raise ImportError(
"Please install the accelerate package using `pip install accelerate` to use the AccelerateParallelBackend."
)
from accelerate import Accelerator
from accelerate.data_loader import DataLoader
from accelerate.utils import (
DataLoaderConfiguration,
DistributedDataParallelKwargs,
InitProcessGroupKwargs,
ProjectConfiguration,
set_seed,
)
logger = get_logger()
_device_type, _device_module = get_device_info()
class AccelerateParallelBackend(BaseParallelBackend):
def __init__(
self,
world_size: int,
pp_degree: int = 1,
dp_degree: int = 1,
dp_shards: int = -1,
cp_degree: int = 1,
tp_degree: int = 1,
backend: str = "nccl",
timeout: int = 180,
logging_dir: Optional[str] = None,
output_dir: Optional[str] = None,
gradient_accumulation_steps: Optional[int] = None,
) -> None:
super().__init__()
self._world_size = world_size
self._pp_degree = pp_degree
self._dp_degree = dp_degree
self._dp_shards = dp_shards
self._cp_degree = cp_degree
self._tp_degree = tp_degree
self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
self._logging_dir = (
self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
)
self._backend = backend
self._timeout = timeout
self._gradient_accumulation_steps = gradient_accumulation_steps
if pp_degree > 1 or dp_shards > 1 or cp_degree > 1 or tp_degree > 1:
raise ValueError(
"AccelerateParallelBackend does not support anything but Distributed Data Parallelism at the moment."
)
if dp_degree != world_size:
raise ValueError("Data parallel degree must be equal to world size.")
self._accelerator = None
if world_size == 1:
# Needs special handling for single GPU training
project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
dataloader_config = DataLoaderConfiguration(
split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
)
init_process_group_kwargs = InitProcessGroupKwargs(
backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
)
self._accelerator = Accelerator(
project_config=project_config,
dataloader_config=dataloader_config,
gradient_accumulation_steps=gradient_accumulation_steps,
log_with=None,
kwargs_handlers=[init_process_group_kwargs],
)
if torch.backends.mps.is_available():
self._accelerator.native_amp = False
self._mesh: torch.distributed.DeviceMesh = None
def enable_determinism(self, seed: int) -> None:
set_seed(seed)
def apply_ddp(self, model: torch.nn.Module, *args, **kwargs) -> torch.nn.Module:
project_config = None
ddp_kwargs = None
init_process_group_kwargs = None
if self._accelerator is None:
project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
dataloader_config = DataLoaderConfiguration(
split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
)
init_process_group_kwargs = InitProcessGroupKwargs(
backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
)
self._accelerator, model = apply_ddp(
model,
project_config,
ddp_kwargs,
init_process_group_kwargs,
dataloader_config,
self._gradient_accumulation_steps,
accelerator=self._accelerator,
)
logger.debug("Applied AccelerateParallel::apply_ddp to model.")
return model
def prepare_model(self, model: torch.nn.Module) -> torch.nn.Module:
return self._accelerator.prepare_model(model)
def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
logger.debug("AccelerateParallelBackend::prepare_dataset completed!")
return dataset
def prepare_dataloader(
self,
dataset: torch.utils.data.IterableDataset,
batch_size: int = 1,
num_workers: int = 0,
pin_memory: bool = False,
) -> DataLoader:
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory
)
dataloader = self._accelerator.prepare_data_loader(dataloader)
logger.debug("AccelerateParallelBackend::prepare_dataloader completed!")
return dataloader
def prepare_optimizer(self, optimizer, lr_scheduler):
optimizer = self._accelerator.prepare_optimizer(optimizer)
lr_scheduler = self._accelerator.prepare_scheduler(lr_scheduler)
return optimizer, lr_scheduler
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
def _get_mesh():
if name is None:
return self._mesh
try:
return self._mesh[name]
except (KeyError, RuntimeError):
return self._mesh
if self._mesh is not None:
return _get_mesh()
mesh_list = [("dp_replicate", self._dp_degree), ("dp_shard", self._dp_shards)]
mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
names = [x[0] for x in mesh_list]
degrees = [x[1] for x in mesh_list]
mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)
dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []
if self.data_replication_enabled:
dp_mesh_names.append("dp_replicate")
dp_cp_mesh_names.append("dp_replicate")
if self.data_sharding_enabled:
dp_mesh_names.append("dp_shard")
dp_cp_mesh_names.append("dp_shard")
dp_shard_cp_mesh_names.append("dp_shard")
if self.context_parallel_enabled:
dp_cp_mesh_names.append("cp")
dp_shard_cp_mesh_names.append("cp")
if len(dp_mesh_names) > 0:
mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
if len(dp_cp_mesh_names) > 0:
mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
if len(dp_shard_cp_mesh_names) > 0:
mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")
logger.debug(f"Device mesh: {mesh}")
self._mesh = mesh
return _get_mesh()
def get_checkpointer(self, *args, **kwargs):
return AccelerateCheckpointer(self._accelerator, *args, **kwargs)
@property
def world_size(self):
return self._accelerator.num_processes
@property
def rank(self):
return self._accelerator.process_index
@property
def local_rank(self):
return self._accelerator.local_process_index
@property
def is_main_process(self):
r"""Returns `True` if the current process is the main process on the master node."""
return self._accelerator.is_main_process
@property
def is_local_main_process(self):
r"""Returns `True` if the current process is the main process on local node."""
return self._accelerator.is_local_main_process
@property
def device(self):
return self._accelerator.device
def wait_for_everyone(self):
self._accelerator.wait_for_everyone()
def destroy(self):
if self.is_main_process and self.tracker is not None:
self.tracker.finish()
self._accelerator.end_training()
@property
def pipeline_parallel_enabled(self):
return self._pp_degree > 1
@property
def data_parallel_enabled(self):
return self._dp_degree > 1 or self._dp_shards > 1
@property
def data_replication_enabled(self):
return self._dp_degree > 1
@property
def data_sharding_enabled(self):
return self._dp_shards > 1
@property
def context_parallel_enabled(self):
return self._cp_degree > 1
@property
def tensor_parallel_enabled(self):
return self._tp_degree > 1
class AccelerateCheckpointer(BaseCheckpointer):
def __init__(
self,
accelerator: Accelerator,
states: Dict[str, Any],
checkpointing_steps: int,
checkpointing_limit: int,
output_dir: str,
enable: bool = True,
_callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None,
_prefix: str = "finetrainers_step",
*args,
**kwargs,
) -> None:
self.accelerator = accelerator
self.states = states
self.checkpointing_steps = checkpointing_steps
self.checkpointing_limit = checkpointing_limit
self.output_dir = pathlib.Path(output_dir)
self.enable = enable
self._callback_fn = _callback_fn
self._prefix = _prefix
def save_model_hook(models, weights, output_dir: str) -> None:
if not self.accelerator.is_main_process:
return
# TODO(aryan): this is a temporary assertion since we only support training transformer at the moment.
# Remove it when adding support for training text encoders/vae and more.
assert len(models) == 1
_callback_fn(weights[0])
torch.save(self.states, os.path.join(output_dir, "states.pt"))
def load_model_hook(models, input_dir) -> None:
self.states = torch.load(os.path.join(input_dir, "states.pt"))
self.accelerator.register_save_state_pre_hook(save_model_hook)
self.accelerator.register_load_state_pre_hook(load_model_hook)
logger.info(f"Checkpointing enabled. Checkpoints will be stored in '{self.output_dir}'")
def save(self, step: int = -1, force: bool = False, *, _device: torch.device, _is_main_process: bool) -> str:
if not self._should_checkpoint(step, force):
return None
checkpoint_dir = self._get_checkpoint_dir(step)
begin_time = time.monotonic()
self.accelerator.save_state(checkpoint_dir.as_posix(), safe_serialization=True)
end_time = time.monotonic()
logger.info(
f"Saved checkpoint in {end_time - begin_time:.2f} seconds at step {step}. Directory: {checkpoint_dir}"
)
self._purge_stale_checkpoints()
return checkpoint_dir.as_posix()
def load(self, step: int = -1) -> bool:
if not self.enable:
return False
if not self.output_dir.exists():
return False
if step != -1 and not self._get_checkpoint_dir(step).exists():
return False
if step == -1:
latest_checkpoint_dir = self._find_latest_checkpoint_dir()
if latest_checkpoint_dir is None:
return False
step = int(latest_checkpoint_dir.name.split("_")[-1])
checkpoint_dir = self._get_checkpoint_dir(step)
logger.info(f"Loading checkpoint from '{checkpoint_dir}' at step {step}")
begin_time = time.monotonic()
self.accelerator.load_state(checkpoint_dir.as_posix())
end_time = time.monotonic()
logger.info(f"Loaded checkpoint in {end_time - begin_time:.2f} seconds.")
return True
def _should_checkpoint(self, step: int, force: bool) -> bool:
if not self.enable:
return False
if not force:
if step % self.checkpointing_steps != 0:
return False
return True
def _get_checkpoint_dir(self, step: int) -> pathlib.Path:
return self.output_dir / f"{self._prefix}_{step}"
def _find_latest_checkpoint_dir(self) -> Optional[pathlib.Path]:
checkpoints = sorted(self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]))
return checkpoints[-1] if len(checkpoints) > 0 else None
def _purge_stale_checkpoints(self) -> None:
if self.checkpointing_limit is None or self.checkpointing_limit <= 0:
return
checkpoints = sorted(
self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]), reverse=True
)
for checkpoint in checkpoints[self.checkpointing_limit :]:
logger.info(f"Deleting stale checkpoint: {checkpoint}")
shutil.rmtree(checkpoint, ignore_errors=True)
def apply_ddp(
model: torch.nn.Module,
project_config: Optional[ProjectConfiguration] = None,
ddp_kwargs: Optional[DistributedDataParallelKwargs] = None,
init_process_group_kwargs: Optional[InitProcessGroupKwargs] = None,
dataloader_config: Optional[DataLoaderConfiguration] = None,
gradient_accumulation_steps: Optional[int] = None,
accelerator: Optional[Accelerator] = None,
) -> torch.nn.Module:
if accelerator is None:
accelerator = Accelerator(
project_config=project_config,
dataloader_config=dataloader_config,
gradient_accumulation_steps=gradient_accumulation_steps,
log_with=None,
kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
)
if torch.backends.mps.is_available():
accelerator.native_amp = False
accelerator.prepare_model(model)
return accelerator, model