Spaces:
Running
Running
from typing import TYPE_CHECKING | |
import torch | |
from .dependencies.diffusers.peft import load_lora_weights | |
if TYPE_CHECKING: | |
from finetrainers.args import BaseArgsType | |
from finetrainers.parallel import ParallelBackendType | |
def perform_patches_for_training(args: "BaseArgsType", parallel_backend: "ParallelBackendType") -> None: | |
# To avoid circular imports | |
from finetrainers.config import ModelType, TrainingType | |
from .dependencies.diffusers import patch | |
# Modeling patches | |
patch_scaled_dot_product_attention() | |
patch.patch_diffusers_rms_norm_forward() | |
# LTX Video patches | |
if args.model_name == ModelType.LTX_VIDEO: | |
from .models.ltx_video import patch | |
patch.patch_transformer_forward() | |
if parallel_backend.tensor_parallel_enabled: | |
patch.patch_apply_rotary_emb_for_tp_compatibility() | |
# Wan patches | |
if args.model_name == ModelType.WAN and "transformer" in args.layerwise_upcasting_modules: | |
from .models.wan import patch | |
patch.patch_time_text_image_embedding_forward() | |
# LoRA patches | |
if args.training_type == TrainingType.LORA and len(args.layerwise_upcasting_modules) > 0: | |
from .dependencies.peft import patch | |
patch.patch_peft_move_adapter_to_device_of_base_layer() | |
def perform_patches_for_inference(args: "BaseArgsType", parallel_backend: "ParallelBackendType") -> None: | |
# To avoid circular imports | |
from .dependencies.diffusers import patch | |
# Modeling patches | |
patch_scaled_dot_product_attention() | |
patch.patch_diffusers_rms_norm_forward() | |
def patch_scaled_dot_product_attention(): | |
from finetrainers.models.attention_dispatch import attention_dispatch | |
torch.nn.functional.scaled_dot_product_attention = attention_dispatch | |