jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
import functools
import json
import os
import re
import time
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Union
import datasets.distributed
import safetensors.torch
import torch
import wandb
from diffusers import DiffusionPipeline
from diffusers.hooks import apply_layerwise_casting
from diffusers.training_utils import cast_training_params
from diffusers.utils import export_to_video
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict
from tqdm import tqdm
from finetrainers import data, logging, models, optimizer, parallel, utils
from finetrainers.args import BaseArgsType
from finetrainers.config import TrainingType
from finetrainers.patches import load_lora_weights
from finetrainers.state import TrainState
from ..base import Trainer
from .config import ControlFullRankConfig, ControlLowRankConfig
from .data import IterableControlDataset, ValidationControlDataset
ArgsType = Union[BaseArgsType, ControlFullRankConfig, ControlLowRankConfig]
logger = logging.get_logger()
class ControlTrainer(Trainer):
def __init__(self, args: ArgsType, model_specification: models.ControlModelSpecification) -> None:
super().__init__(args)
# Tokenizers
self.tokenizer = None
self.tokenizer_2 = None
self.tokenizer_3 = None
# Text encoders
self.text_encoder = None
self.text_encoder_2 = None
self.text_encoder_3 = None
# Denoisers
self.transformer = None
self.unet = None
# Autoencoders
self.vae = None
# Scheduler
self.scheduler = None
# Optimizer & LR scheduler
self.optimizer = None
self.lr_scheduler = None
# Checkpoint manager
self.checkpointer = None
self.model_specification = model_specification
self._are_condition_models_loaded = False
model_specification._trainer_init(
args.frame_conditioning_type, args.frame_conditioning_index, args.frame_conditioning_concatenate_mask
)
def run(self) -> None:
try:
self._prepare_models()
self._prepare_trainable_parameters()
self._prepare_for_training()
self._prepare_dataset()
self._prepare_checkpointing()
self._train()
# trainer._evaluate()
except Exception as e:
logger.error(f"Error during training: {e}")
self.state.parallel_backend.destroy()
raise e
def _prepare_models(self) -> None:
logger.info("Initializing models")
# TODO(aryan): allow multiple control conditions instead of just one if there's a use case for it
new_in_features = self.model_specification._original_control_layer_in_features * 2
diffusion_components = self.model_specification.load_diffusion_models(new_in_features)
self._set_components(diffusion_components)
if self.state.parallel_backend.pipeline_parallel_enabled:
raise NotImplementedError(
"Pipeline parallelism is not supported yet. This will be supported in the future."
)
def _prepare_trainable_parameters(self) -> None:
logger.info("Initializing trainable parameters")
parallel_backend = self.state.parallel_backend
model_spec = self.model_specification
if self.args.training_type == TrainingType.CONTROL_FULL_FINETUNE:
logger.info("Finetuning transformer with no additional parameters")
utils.set_requires_grad([self.transformer], True)
else:
logger.info("Finetuning transformer with PEFT parameters")
utils.set_requires_grad([self.transformer], False)
# Layerwise upcasting must be applied before adding the LoRA adapter.
# If we don't perform this before moving to device, we might OOM on the GPU. So, best to do it on
# CPU for now, before support is added in Diffusers for loading and enabling layerwise upcasting directly.
if (
self.args.training_type == TrainingType.CONTROL_LORA
and "transformer" in self.args.layerwise_upcasting_modules
):
apply_layerwise_casting(
self.transformer,
storage_dtype=self.args.layerwise_upcasting_storage_dtype,
compute_dtype=self.args.transformer_dtype,
skip_modules_pattern=self.args.layerwise_upcasting_skip_modules_pattern,
non_blocking=True,
)
transformer_lora_config = None
if self.args.training_type == TrainingType.CONTROL_LORA:
transformer_lora_config = LoraConfig(
r=self.args.rank,
lora_alpha=self.args.lora_alpha,
init_lora_weights=True,
target_modules=self._get_lora_target_modules(),
rank_pattern={
model_spec.control_injection_layer_name: model_spec._original_control_layer_out_features
},
alpha_pattern={
model_spec.control_injection_layer_name: model_spec._original_control_layer_out_features
},
)
self.transformer.add_adapter(transformer_lora_config)
if self.args.train_qk_norm:
qk_norm_identifiers = model_spec._qk_norm_identifiers
qk_norm_module_names, qk_norm_modules = [], []
for name, module in self.transformer.named_modules():
regex_match = any(re.search(identifier, name) is not None for identifier in qk_norm_identifiers)
is_parameteric = len(list(module.parameters())) > 0
if regex_match and is_parameteric:
qk_norm_module_names.append(name)
qk_norm_modules.append(module)
if len(qk_norm_modules) > 0:
logger.info(f"Training QK norms for modules: {qk_norm_module_names}")
utils.set_requires_grad(qk_norm_modules, True)
else:
logger.warning(f"No QK norm modules found with identifiers: {qk_norm_identifiers}")
# Make sure the trainable params are in float32 if data sharding is not enabled. For FSDP, we need all
# parameters to be of the same dtype.
if parallel_backend.data_sharding_enabled:
self.transformer.to(dtype=self.args.transformer_dtype)
else:
if self.args.training_type == TrainingType.CONTROL_LORA:
cast_training_params([self.transformer], dtype=torch.float32)
def _prepare_for_training(self) -> None:
# 1. Apply parallelism
parallel_backend = self.state.parallel_backend
model_specification = self.model_specification
if parallel_backend.context_parallel_enabled:
parallel_backend.apply_context_parallel(self.transformer, parallel_backend.get_mesh()["cp"])
if parallel_backend.tensor_parallel_enabled:
# TODO(aryan): handle fp8 from TorchAO here
model_specification.apply_tensor_parallel(
backend=parallel.ParallelBackendEnum.PTD,
device_mesh=parallel_backend.get_mesh()["tp"],
transformer=self.transformer,
)
# Enable gradient checkpointing
if self.args.gradient_checkpointing:
# TODO(aryan): support other checkpointing types
utils.apply_activation_checkpointing(self.transformer, checkpointing_type="full")
# Apply torch.compile
self._maybe_torch_compile()
# Enable DDP, FSDP or HSDP
if parallel_backend.data_sharding_enabled:
# TODO(aryan): remove this when supported
if self.args.parallel_backend == "accelerate":
raise NotImplementedError("Data sharding is not supported with Accelerate yet.")
dp_method = "HSDP" if parallel_backend.data_replication_enabled else "FSDP"
logger.info(f"Applying {dp_method} on the model")
if parallel_backend.data_replication_enabled or parallel_backend.context_parallel_enabled:
dp_mesh_names = ("dp_replicate", "dp_shard_cp")
else:
dp_mesh_names = ("dp_shard_cp",)
parallel_backend.apply_fsdp2(
model=self.transformer,
param_dtype=self.args.transformer_dtype,
reduce_dtype=torch.float32,
output_dtype=None,
pp_enabled=parallel_backend.pipeline_parallel_enabled,
cpu_offload=False, # TODO(aryan): needs to be tested and allowed for enabling later
device_mesh=parallel_backend.get_mesh()[dp_mesh_names],
)
elif parallel_backend.data_replication_enabled:
if parallel_backend.get_mesh().ndim > 1:
raise ValueError("DDP not supported for > 1D parallelism")
parallel_backend.apply_ddp(self.transformer, parallel_backend.get_mesh())
else:
parallel_backend.prepare_model(self.transformer)
self._move_components_to_device()
# 2. Prepare optimizer and lr scheduler
# For training LoRAs, we can be a little more optimal. Currently, the OptimizerWrapper only accepts torch::nn::Module.
# This causes us to loop over all the parameters (even ones that don't require gradients, as in LoRA) at each optimizer
# step. This is OK (see https://github.com/pytorch/pytorch/blob/2f40f789dafeaa62c4e4b90dbf4a900ff6da2ca4/torch/optim/sgd.py#L85-L99)
# but can be optimized a bit by maybe creating a simple wrapper module encompassing the actual parameters that require
# gradients. TODO(aryan): look into it in the future.
model_parts = [self.transformer]
self.state.num_trainable_parameters = sum(
p.numel() for m in model_parts for p in m.parameters() if p.requires_grad
)
# Setup distributed optimizer and lr scheduler
logger.info("Initializing optimizer and lr scheduler")
self.state.train_state = TrainState()
self.optimizer = optimizer.get_optimizer(
parallel_backend=self.args.parallel_backend,
name=self.args.optimizer,
model_parts=model_parts,
learning_rate=self.args.lr,
beta1=self.args.beta1,
beta2=self.args.beta2,
beta3=self.args.beta3,
epsilon=self.args.epsilon,
weight_decay=self.args.weight_decay,
fused=False,
)
self.lr_scheduler = optimizer.get_lr_scheduler(
parallel_backend=self.args.parallel_backend,
name=self.args.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=self.args.lr_warmup_steps,
num_training_steps=self.args.train_steps,
# TODO(aryan): handle last_epoch
)
self.optimizer, self.lr_scheduler = parallel_backend.prepare_optimizer(self.optimizer, self.lr_scheduler)
# 3. Initialize trackers, directories and repositories
self._init_logging()
self._init_trackers()
self._init_directories_and_repositories()
def _prepare_dataset(self) -> None:
logger.info("Initializing dataset and dataloader")
with open(self.args.dataset_config, "r") as file:
dataset_configs = json.load(file)["datasets"]
logger.info(f"Training configured to use {len(dataset_configs)} datasets")
datasets = []
for config in dataset_configs:
data_root = config.pop("data_root", None)
dataset_file = config.pop("dataset_file", None)
dataset_type = config.pop("dataset_type")
caption_options = config.pop("caption_options", {})
if data_root is not None and dataset_file is not None:
raise ValueError("Both data_root and dataset_file cannot be provided in the same dataset config.")
dataset_name_or_root = data_root or dataset_file
dataset = data.initialize_dataset(
dataset_name_or_root, dataset_type, streaming=True, infinite=True, _caption_options=caption_options
)
if not dataset._precomputable_once and self.args.precomputation_once:
raise ValueError(
f"Dataset {dataset_name_or_root} does not support precomputing all embeddings at once."
)
logger.info(f"Initialized dataset: {dataset_name_or_root}")
dataset = self.state.parallel_backend.prepare_dataset(dataset)
dataset = data.wrap_iterable_dataset_for_preprocessing(dataset, dataset_type, config)
datasets.append(dataset)
dataset = data.combine_datasets(datasets, buffer_size=self.args.dataset_shuffle_buffer_size, shuffle=True)
dataset = IterableControlDataset(dataset, self.args.control_type, self.state.parallel_backend.device)
dataloader = self.state.parallel_backend.prepare_dataloader(
dataset, batch_size=1, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.pin_memory
)
self.dataset = dataset
self.dataloader = dataloader
def _prepare_checkpointing(self) -> None:
parallel_backend = self.state.parallel_backend
def save_model_hook(state_dict: Dict[str, Any]) -> None:
state_dict = utils.get_unwrapped_model_state_dict(state_dict)
if parallel_backend.is_main_process:
if self.args.training_type == TrainingType.CONTROL_LORA:
state_dict = get_peft_model_state_dict(self.transformer, state_dict)
qk_norm_state_dict = None
if self.args.train_qk_norm:
qk_norm_state_dict = {
name: parameter
for name, parameter in state_dict.items()
if any(
re.search(identifier, name) is not None
for identifier in self.model_specification._qk_norm_identifiers
)
and parameter.numel() > 0
}
if len(qk_norm_state_dict) == 0:
qk_norm_state_dict = None
# fmt: off
metadata = {
"r": self.args.rank,
"lora_alpha": self.args.lora_alpha,
"init_lora_weights": True,
"target_modules": self._get_lora_target_modules(),
"rank_pattern": {self.model_specification.control_injection_layer_name: self.model_specification._original_control_layer_out_features},
"alpha_pattern": {self.model_specification.control_injection_layer_name: self.model_specification._original_control_layer_out_features},
}
metadata = {"lora_config": json.dumps(metadata, indent=4)}
# fmt: on
self.model_specification._save_lora_weights(
os.path.join(self.args.output_dir, "lora_weights", f"{self.state.train_state.step:06d}"),
state_dict,
qk_norm_state_dict,
self.scheduler,
metadata,
)
elif self.args.training_type == TrainingType.CONTROL_FULL_FINETUNE:
self.model_specification._save_model(
os.path.join(self.args.output_dir, "model_weights", f"{self.state.train_state.step:06d}"),
self.transformer,
state_dict,
self.scheduler,
)
parallel_backend.wait_for_everyone()
enable_state_checkpointing = self.args.checkpointing_steps > 0
self.checkpointer = parallel_backend.get_checkpointer(
dataloader=self.dataloader,
model_parts=[self.transformer],
optimizers=self.optimizer,
schedulers=self.lr_scheduler,
states={"train_state": self.state.train_state},
checkpointing_steps=self.args.checkpointing_steps,
checkpointing_limit=self.args.checkpointing_limit,
output_dir=self.args.output_dir,
enable=enable_state_checkpointing,
_callback_fn=save_model_hook,
)
resume_from_checkpoint = self.args.resume_from_checkpoint
if resume_from_checkpoint == "latest":
resume_from_checkpoint = -1
if resume_from_checkpoint is not None:
self.checkpointer.load(resume_from_checkpoint)
def _train(self) -> None:
logger.info("Starting training")
parallel_backend = self.state.parallel_backend
train_state = self.state.train_state
device = parallel_backend.device
dtype = self.args.transformer_dtype
memory_statistics = utils.get_memory_statistics()
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
global_batch_size = self.args.batch_size * parallel_backend._dp_degree
info = {
"trainable parameters": self.state.num_trainable_parameters,
"train steps": self.args.train_steps,
"per-replica batch size": self.args.batch_size,
"global batch size": global_batch_size,
"gradient accumulation steps": self.args.gradient_accumulation_steps,
}
logger.info(f"Training configuration: {json.dumps(info, indent=4)}")
progress_bar = tqdm(
range(0, self.args.train_steps),
initial=train_state.step,
desc="Training steps",
disable=not parallel_backend.is_local_main_process,
)
generator = torch.Generator(device=device)
if self.args.seed is not None:
generator = generator.manual_seed(self.args.seed)
self.state.generator = generator
scheduler_sigmas = utils.get_scheduler_sigmas(self.scheduler)
scheduler_sigmas = (
scheduler_sigmas.to(device=device, dtype=torch.float32) if scheduler_sigmas is not None else None
)
scheduler_alphas = utils.get_scheduler_alphas(self.scheduler)
scheduler_alphas = (
scheduler_alphas.to(device=device, dtype=torch.float32) if scheduler_alphas is not None else None
)
# timesteps_buffer = []
self.transformer.train()
data_iterator = iter(self.dataloader)
compute_posterior = False if self.args.enable_precomputation else (not self.args.precomputation_once)
preprocessor = data.initialize_preprocessor(
rank=parallel_backend.rank,
world_size=parallel_backend.world_size,
num_items=self.args.precomputation_items if self.args.enable_precomputation else 1,
processor_fn={
"condition": self.model_specification.prepare_conditions,
"latent": functools.partial(
self.model_specification.prepare_latents, compute_posterior=compute_posterior
),
},
save_dir=self.args.precomputation_dir,
enable_precomputation=self.args.enable_precomputation,
enable_reuse=self.args.precomputation_reuse,
)
condition_iterator: Iterable[Dict[str, Any]] = None
latent_iterator: Iterable[Dict[str, Any]] = None
sampler = data.ResolutionSampler(
batch_size=self.args.batch_size, dim_keys=self.model_specification._resolution_dim_keys
)
requires_gradient_step = True
accumulated_loss = 0.0
while (
train_state.step < self.args.train_steps and train_state.observed_data_samples < self.args.max_data_samples
):
# 1. Load & preprocess data if required
if preprocessor.requires_data:
condition_iterator, latent_iterator = self._prepare_data(preprocessor, data_iterator)
# 2. Prepare batch
with self.tracker.timed("timing/batch_preparation"):
try:
condition_item = next(condition_iterator)
latent_item = next(latent_iterator)
sampler.consume(condition_item, latent_item)
except StopIteration:
if requires_gradient_step:
self.optimizer.step()
self.lr_scheduler.step()
requires_gradient_step = False
logger.info("Data exhausted. Exiting training loop.")
break
if sampler.is_ready:
condition_batch, latent_batch = sampler.get_batch()
condition_model_conditions = self.model_specification.collate_conditions(condition_batch)
latent_model_conditions = self.model_specification.collate_latents(latent_batch)
else:
continue
train_state.step += 1
train_state.observed_data_samples += self.args.batch_size * parallel_backend._dp_degree
logger.debug(f"Starting training step ({train_state.step}/{self.args.train_steps})")
latent_model_conditions = utils.align_device_and_dtype(latent_model_conditions, device, dtype)
condition_model_conditions = utils.align_device_and_dtype(condition_model_conditions, device, dtype)
latent_model_conditions = utils.make_contiguous(latent_model_conditions)
condition_model_conditions = utils.make_contiguous(condition_model_conditions)
# 3. Forward pass
sigmas = utils.prepare_sigmas(
scheduler=self.scheduler,
sigmas=scheduler_sigmas,
batch_size=self.args.batch_size,
num_train_timesteps=self.scheduler.config.num_train_timesteps,
flow_weighting_scheme=self.args.flow_weighting_scheme,
flow_logit_mean=self.args.flow_logit_mean,
flow_logit_std=self.args.flow_logit_std,
flow_mode_scale=self.args.flow_mode_scale,
device=device,
generator=self.state.generator,
)
sigmas = utils.expand_tensor_dims(sigmas, latent_model_conditions["latents"].ndim)
# NOTE: for planned refactor, make sure that forward and backward pass run under the context.
# If only forward runs under context, backward will most likely fail when using activation checkpointing
with self.attention_provider_ctx(training=True):
with self.tracker.timed("timing/forward"):
pred, target, sigmas = self.model_specification.forward(
transformer=self.transformer,
scheduler=self.scheduler,
condition_model_conditions=condition_model_conditions,
latent_model_conditions=latent_model_conditions,
sigmas=sigmas,
compute_posterior=compute_posterior,
)
timesteps = (sigmas * 1000.0).long()
weights = utils.prepare_loss_weights(
scheduler=self.scheduler,
alphas=scheduler_alphas[timesteps] if scheduler_alphas is not None else None,
sigmas=sigmas,
flow_weighting_scheme=self.args.flow_weighting_scheme,
)
weights = utils.expand_tensor_dims(weights, pred.ndim)
# 4. Compute loss & backward pass
with self.tracker.timed("timing/backward"):
loss = weights.float() * (pred.float() - target.float()).pow(2)
# Average loss across all but batch dimension (for per-batch debugging in case needed)
loss = loss.mean(list(range(1, loss.ndim)))
# Average loss across batch dimension
loss = loss.mean()
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
loss.backward()
accumulated_loss += loss.detach().item()
requires_gradient_step = True
# 5. Clip gradients
model_parts = [self.transformer]
grad_norm = utils.torch._clip_grad_norm_while_handling_failing_dtensor_cases(
[p for m in model_parts for p in m.parameters()],
self.args.max_grad_norm,
foreach=True,
pp_mesh=parallel_backend.get_mesh()["pp"] if parallel_backend.pipeline_parallel_enabled else None,
)
# 6. Step optimizer & log metrics
logs = {}
if train_state.step % self.args.gradient_accumulation_steps == 0:
# TODO(aryan): revisit no_sync() for FSDP
with self.tracker.timed("timing/optimizer_step"):
self.optimizer.step()
self.lr_scheduler.step()
self.optimizer.zero_grad()
if grad_norm is not None:
grad_norm = grad_norm if isinstance(grad_norm, float) else grad_norm.detach().item()
if (
parallel_backend.data_replication_enabled
or parallel_backend.data_sharding_enabled
or parallel_backend.context_parallel_enabled
):
dp_cp_mesh = parallel_backend.get_mesh()["dp_cp"]
if grad_norm is not None:
grad_norm = parallel.dist_mean(torch.tensor([grad_norm], device=device), dp_cp_mesh)
global_avg_loss, global_max_loss = (
parallel.dist_mean(torch.tensor([accumulated_loss], device=device), dp_cp_mesh),
parallel.dist_max(torch.tensor([accumulated_loss], device=device), dp_cp_mesh),
)
else:
global_avg_loss = global_max_loss = accumulated_loss
logs["train/global_avg_loss"] = global_avg_loss
logs["train/global_max_loss"] = global_max_loss
if grad_norm is not None:
logs["train/grad_norm"] = grad_norm
train_state.global_avg_losses.append(global_avg_loss)
train_state.global_max_losses.append(global_max_loss)
accumulated_loss = 0.0
requires_gradient_step = False
progress_bar.update(1)
progress_bar.set_postfix(logs)
# timesteps_buffer.extend([(train_state.step, t) for t in timesteps.detach().cpu().numpy().tolist()])
if train_state.step % self.args.logging_steps == 0:
# TODO(aryan): handle non-SchedulerWrapper schedulers (probably not required eventually) since they might not be dicts
# TODO(aryan): causes NCCL hang for some reason. look into later
# logs.update(self.lr_scheduler.get_last_lr())
# timesteps_table = wandb.Table(data=timesteps_buffer, columns=["step", "timesteps"])
# logs["timesteps"] = wandb.plot.scatter(
# timesteps_table, "step", "timesteps", title="Timesteps distribution"
# )
# timesteps_buffer = []
logs["train/observed_data_samples"] = train_state.observed_data_samples
parallel_backend.log(logs, step=train_state.step)
train_state.log_steps.append(train_state.step)
# 7. Save checkpoint if required
with self.tracker.timed("timing/checkpoint"):
self.checkpointer.save(
step=train_state.step, _device=device, _is_main_process=parallel_backend.is_main_process
)
# 8. Perform validation if required
if train_state.step % self.args.validation_steps == 0:
self._validate(step=train_state.step, final_validation=False)
# 9. Final checkpoint, validation & cleanup
self.checkpointer.save(
train_state.step, force=True, _device=device, _is_main_process=parallel_backend.is_main_process
)
parallel_backend.wait_for_everyone()
self._validate(step=train_state.step, final_validation=True)
self._delete_components()
memory_statistics = utils.get_memory_statistics()
logger.info(f"Memory after training end: {json.dumps(memory_statistics, indent=4)}")
# 10. Upload artifacts to hub
if parallel_backend.is_main_process and self.args.push_to_hub:
upload_folder(
repo_id=self.state.repo_id,
folder_path=self.args.output_dir,
ignore_patterns=[f"{self.checkpointer._prefix}_*"],
)
parallel_backend.destroy()
def _validate(self, step: int, final_validation: bool = False) -> None:
if self.args.validation_dataset_file is None:
return
logger.info("Starting validation")
# 1. Load validation dataset
parallel_backend = self.state.parallel_backend
dataset = data.ValidationDataset(self.args.validation_dataset_file)
# Hack to make accelerate work. TODO(aryan): refactor
if parallel_backend._dp_degree > 1:
dp_mesh = parallel_backend.get_mesh()["dp"]
dp_local_rank, dp_world_size = dp_mesh.get_local_rank(), dp_mesh.size()
dataset._data = datasets.distributed.split_dataset_by_node(dataset._data, dp_local_rank, dp_world_size)
else:
dp_mesh = None
dp_local_rank, dp_world_size = parallel_backend.local_rank, 1
dataset = ValidationControlDataset(dataset, self.args.control_type, parallel_backend.device)
validation_dataloader = data.DPDataLoader(
dp_local_rank,
dataset,
batch_size=1,
num_workers=self.args.dataloader_num_workers,
collate_fn=lambda items: items,
)
data_iterator = iter(validation_dataloader)
main_process_prompts_to_filenames = {} # Used to save model card
all_processes_artifacts = [] # Used to gather artifacts from all processes
memory_statistics = utils.get_memory_statistics()
logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")
seed = self.args.seed if self.args.seed is not None else 0
generator = torch.Generator(device=parallel_backend.device).manual_seed(seed)
pipeline = self._init_pipeline(final_validation=final_validation)
# 2. Run validation
# TODO(aryan): when running validation with FSDP, if the number of data points is not divisible by dp_shards, we
# will hang indefinitely. Either pad the dataset or raise an error early on during initialization if the dataset
# size is not divisible by dp_shards.
self.transformer.eval()
while True:
validation_data = next(data_iterator, None)
if validation_data is None:
break
validation_data = validation_data[0]
with self.attention_provider_ctx(training=False):
validation_artifacts = self.model_specification.validation(
pipeline=pipeline, generator=generator, **validation_data
)
if dp_local_rank != 0:
continue
PROMPT = validation_data["prompt"]
IMAGE = validation_data.get("image", None)
VIDEO = validation_data.get("video", None)
CONTROL_IMAGE = validation_data.get("control_image", None)
CONTROL_VIDEO = validation_data.get("control_video", None)
EXPORT_FPS = validation_data.get("export_fps", 30)
# 2.1. If there are any initial images or videos, they will be logged to keep track of them as
# conditioning for generation.
prompt_filename = utils.string_to_filename(PROMPT)[:25]
artifacts = {
"input_image": data.ImageArtifact(value=IMAGE),
"input_video": data.VideoArtifact(value=VIDEO),
"control_image": data.ImageArtifact(value=CONTROL_IMAGE),
"control_video": data.VideoArtifact(value=CONTROL_VIDEO),
}
# 2.2. Track the artifacts generated from validation
for i, validation_artifact in enumerate(validation_artifacts):
if validation_artifact.value is None:
continue
artifacts.update({f"artifact_{i}": validation_artifact})
# 2.3. Save the artifacts to the output directory and create appropriate logging objects
# TODO(aryan): Currently, we only support WandB so we've hardcoded it here. Needs to be revisited.
for index, (key, artifact) in enumerate(list(artifacts.items())):
assert isinstance(artifact, (data.ImageArtifact, data.VideoArtifact))
if artifact.value is None:
continue
time_, rank, ext = int(time.time()), parallel_backend.rank, artifact.file_extension
filename = "validation-" if not final_validation else "final-"
filename += f"{step}-{rank}-{index}-{prompt_filename}-{time_}.{ext}"
if parallel_backend.is_main_process and ext in ["mp4", "jpg", "jpeg", "png"]:
main_process_prompts_to_filenames[PROMPT] = filename
caption = PROMPT
if key == "control_image":
filename = f"control_image-{filename}"
caption = f"[control] {caption}"
elif key == "control_video":
filename = f"control_video-{filename}"
caption = f"[control] {caption}"
output_filename = os.path.join(self.args.output_dir, filename)
if isinstance(artifact, data.ImageArtifact):
artifact.value.save(output_filename)
all_processes_artifacts.append(wandb.Image(output_filename, caption=caption))
elif isinstance(artifact, data.VideoArtifact):
export_to_video(artifact.value, output_filename, fps=EXPORT_FPS)
all_processes_artifacts.append(wandb.Video(output_filename, caption=caption))
# 3. Cleanup & log artifacts
parallel_backend.wait_for_everyone()
memory_statistics = utils.get_memory_statistics()
logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
# Remove all hooks that might have been added during pipeline initialization to the models
pipeline.remove_all_hooks()
del pipeline
module_names = ["text_encoder", "text_encoder_2", "text_encoder_3", "vae"]
if self.args.enable_precomputation:
self._delete_components(module_names)
torch.cuda.reset_peak_memory_stats(parallel_backend.device)
# Gather artifacts from all processes. We also need to flatten them since each process returns a list of artifacts.
all_artifacts = [None] * dp_world_size
if dp_world_size > 1:
torch.distributed.all_gather_object(all_artifacts, all_processes_artifacts)
else:
all_artifacts = [all_processes_artifacts]
all_artifacts = [artifact for artifacts in all_artifacts for artifact in artifacts]
if parallel_backend.is_main_process:
tracker_key = "final" if final_validation else "validation"
artifact_log_dict = {}
image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
if len(image_artifacts) > 0:
artifact_log_dict["images"] = image_artifacts
video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
if len(video_artifacts) > 0:
artifact_log_dict["videos"] = video_artifacts
parallel_backend.log({tracker_key: artifact_log_dict}, step=step)
if self.args.push_to_hub and final_validation:
video_filenames = list(main_process_prompts_to_filenames.values())
prompts = list(main_process_prompts_to_filenames.keys())
utils.save_model_card(
args=self.args, repo_id=self.state.repo_id, videos=video_filenames, validation_prompts=prompts
)
parallel_backend.wait_for_everyone()
if not final_validation:
self._move_components_to_device()
self.transformer.train()
def _evaluate(self) -> None:
raise NotImplementedError("Evaluation has not been implemented yet.")
def _init_directories_and_repositories(self) -> None:
if self.state.parallel_backend.is_main_process:
self.args.output_dir = Path(self.args.output_dir)
self.args.output_dir.mkdir(parents=True, exist_ok=True)
self.state.output_dir = Path(self.args.output_dir)
if self.args.push_to_hub:
repo_id = self.args.hub_model_id or Path(self.args.output_dir).name
self.state.repo_id = create_repo(token=self.args.hub_token, repo_id=repo_id, exist_ok=True).repo_id
def _move_components_to_device(
self, components: Optional[List[torch.nn.Module]] = None, device: Optional[Union[str, torch.device]] = None
) -> None:
if device is None:
device = self.state.parallel_backend.device
if components is None:
components = [self.text_encoder, self.text_encoder_2, self.text_encoder_3, self.transformer, self.vae]
components = utils.get_non_null_items(components)
components = list(filter(lambda x: hasattr(x, "to"), components))
for component in components:
component.to(device)
def _set_components(self, components: Dict[str, Any]) -> None:
for component_name in self._all_component_names:
existing_component = getattr(self, component_name, None)
new_component = components.get(component_name, existing_component)
setattr(self, component_name, new_component)
def _delete_components(self, component_names: Optional[List[str]] = None) -> None:
if component_names is None:
component_names = self._all_component_names
for component_name in component_names:
setattr(self, component_name, None)
utils.free_memory()
utils.synchronize_device()
def _init_pipeline(self, final_validation: bool = False) -> DiffusionPipeline:
parallel_backend = self.state.parallel_backend
module_names = ["text_encoder", "text_encoder_2", "text_encoder_3", "transformer", "vae"]
if not final_validation:
module_names.remove("transformer")
pipeline = self.model_specification.load_pipeline(
tokenizer=self.tokenizer,
tokenizer_2=self.tokenizer_2,
tokenizer_3=self.tokenizer_3,
text_encoder=self.text_encoder,
text_encoder_2=self.text_encoder_2,
text_encoder_3=self.text_encoder_3,
# TODO(aryan): handle unwrapping for compiled modules
# transformer=utils.unwrap_model(accelerator, self.transformer),
transformer=self.transformer,
vae=self.vae,
enable_slicing=self.args.enable_slicing,
enable_tiling=self.args.enable_tiling,
enable_model_cpu_offload=self.args.enable_model_cpu_offload,
training=True,
)
else:
self._delete_components()
# TODO(aryan): allow multiple control conditions instead of just one if there's a use case for it
new_in_features = self.model_specification._original_control_layer_in_features * 2
if self.args.frame_conditioning_concatenate_mask:
new_in_features += 1
transformer = self.model_specification.load_diffusion_models(new_in_features)["transformer"]
pipeline = self.model_specification.load_pipeline(
transformer=transformer,
enable_slicing=self.args.enable_slicing,
enable_tiling=self.args.enable_tiling,
enable_model_cpu_offload=self.args.enable_model_cpu_offload,
training=False,
device=parallel_backend.device,
)
# Load the LoRA weights if performing LoRA finetuning
if self.args.training_type == TrainingType.CONTROL_LORA:
load_lora_weights(
pipeline, os.path.join(self.args.output_dir, "lora_weights", f"{self.state.train_state.step:06d}")
)
norm_state_dict_path = os.path.join(
self.args.output_dir,
"lora_weights",
f"{self.state.train_state.step:06d}",
"norm_state_dict.safetensors",
)
if self.args.train_qk_norm and norm_state_dict_path.exists():
norm_state_dict = safetensors.torch.load_file(norm_state_dict_path, parallel_backend.device)
self.transformer.load_state_dict(norm_state_dict)
components = {module_name: getattr(pipeline, module_name, None) for module_name in module_names}
self._set_components(components)
if not self.args.enable_model_cpu_offload:
self._move_components_to_device(list(components.values()))
self._maybe_torch_compile()
return pipeline
def _prepare_data(
self,
preprocessor: Union[data.InMemoryDistributedDataPreprocessor, data.PrecomputedDistributedDataPreprocessor],
data_iterator,
):
if not self.args.enable_precomputation:
if not self._are_condition_models_loaded:
logger.info(
"Precomputation disabled. Loading in-memory data loaders. All components will be loaded on GPUs."
)
condition_components = self.model_specification.load_condition_models()
latent_components = self.model_specification.load_latent_models()
all_components = {**condition_components, **latent_components}
self._set_components(all_components)
self._move_components_to_device(list(all_components.values()))
utils._enable_vae_memory_optimizations(self.vae, self.args.enable_slicing, self.args.enable_tiling)
self._maybe_torch_compile()
else:
condition_components = {k: v for k in self._condition_component_names if (v := getattr(self, k, None))}
latent_components = {k: v for k in self._latent_component_names if (v := getattr(self, k, None))}
condition_iterator = preprocessor.consume(
"condition",
components=condition_components,
data_iterator=data_iterator,
generator=self.state.generator,
cache_samples=True,
)
latent_iterator = preprocessor.consume(
"latent",
components=latent_components,
data_iterator=data_iterator,
generator=self.state.generator,
use_cached_samples=True,
drop_samples=True,
)
self._are_condition_models_loaded = True
else:
logger.info("Precomputed condition & latent data exhausted. Loading & preprocessing new data.")
parallel_backend = self.state.parallel_backend
if parallel_backend.world_size == 1:
self._move_components_to_device([self.transformer], "cpu")
utils.free_memory()
utils.synchronize_device()
torch.cuda.reset_peak_memory_stats(parallel_backend.device)
consume_fn = preprocessor.consume_once if self.args.precomputation_once else preprocessor.consume
# Prepare condition iterators
condition_components, component_names, component_modules = {}, [], []
if not self.args.precomputation_reuse:
condition_components = self.model_specification.load_condition_models()
component_names = list(condition_components.keys())
component_modules = list(condition_components.values())
self._set_components(condition_components)
self._move_components_to_device(component_modules)
self._maybe_torch_compile()
condition_iterator = consume_fn(
"condition",
components=condition_components,
data_iterator=data_iterator,
generator=self.state.generator,
cache_samples=True,
)
self._delete_components(component_names)
del condition_components, component_names, component_modules
# Prepare latent iterators
latent_components, component_names, component_modules = {}, [], []
if not self.args.precomputation_reuse:
latent_components = self.model_specification.load_latent_models()
utils._enable_vae_memory_optimizations(self.vae, self.args.enable_slicing, self.args.enable_tiling)
component_names = list(latent_components.keys())
component_modules = list(latent_components.values())
self._set_components(latent_components)
self._move_components_to_device(component_modules)
self._maybe_torch_compile()
latent_iterator = consume_fn(
"latent",
components=latent_components,
data_iterator=data_iterator,
generator=self.state.generator,
use_cached_samples=True,
drop_samples=True,
)
self._delete_components(component_names)
del latent_components, component_names, component_modules
if parallel_backend.world_size == 1:
self._move_components_to_device([self.transformer])
return condition_iterator, latent_iterator
def _maybe_torch_compile(self):
for model_name, compile_scope in zip(self.args.compile_modules, self.args.compile_scopes):
model = getattr(self, model_name, None)
if model is not None:
logger.info(f"Applying torch.compile to '{model_name}' with scope '{compile_scope}'.")
compiled_model = utils.apply_compile(model, compile_scope)
setattr(self, model_name, compiled_model)
def _get_training_info(self) -> Dict[str, Any]:
info = self.args.to_dict()
# Removing flow matching arguments when not using flow-matching objective
diffusion_args = info.get("diffusion_arguments", {})
scheduler_name = self.scheduler.__class__.__name__ if self.scheduler is not None else ""
if scheduler_name != "FlowMatchEulerDiscreteScheduler":
filtered_diffusion_args = {k: v for k, v in diffusion_args.items() if "flow" not in k}
else:
filtered_diffusion_args = diffusion_args
info.update({"diffusion_arguments": filtered_diffusion_args})
return info
def _get_lora_target_modules(self):
target_modules = self.args.target_modules
if isinstance(target_modules, list):
target_modules = list(target_modules) # Make a copy to avoid modifying args
target_modules.append(f"^{self.model_specification.control_injection_layer_name}$")
if isinstance(target_modules, str):
target_modules = f"(^{self.model_specification.control_injection_layer_name}$)|({target_modules})"
return target_modules
# fmt: off
_all_component_names = ["tokenizer", "tokenizer_2", "tokenizer_3", "text_encoder", "text_encoder_2", "text_encoder_3", "transformer", "unet", "vae", "scheduler"]
_condition_component_names = ["tokenizer", "tokenizer_2", "tokenizer_3", "text_encoder", "text_encoder_2", "text_encoder_3"]
_latent_component_names = ["vae"]
_diffusion_component_names = ["transformer", "unet", "scheduler"]
# fmt: on