Spaces:
Running
Running
import torch | |
from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanTransformer3DModel | |
from transformers import AutoTokenizer, T5EncoderModel | |
from finetrainers.models.wan import WanModelSpecification | |
class DummyWanModelSpecification(WanModelSpecification): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
def load_condition_models(self): | |
text_encoder = T5EncoderModel.from_pretrained( | |
"hf-internal-testing/tiny-random-t5", torch_dtype=self.text_encoder_dtype | |
) | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
return {"text_encoder": text_encoder, "tokenizer": tokenizer} | |
def load_latent_models(self): | |
torch.manual_seed(0) | |
vae = AutoencoderKLWan( | |
base_dim=3, | |
z_dim=16, | |
dim_mult=[1, 1, 1, 1], | |
num_res_blocks=1, | |
temperal_downsample=[False, True, True], | |
) | |
# TODO(aryan): Upload dummy checkpoints to the Hub so that we don't have to do this. | |
# Doing so overrides things like _keep_in_fp32_modules | |
vae.to(self.vae_dtype) | |
self.vae_config = vae.config | |
return {"vae": vae} | |
def load_diffusion_models(self): | |
torch.manual_seed(0) | |
transformer = WanTransformer3DModel( | |
patch_size=(1, 2, 2), | |
num_attention_heads=2, | |
attention_head_dim=12, | |
in_channels=16, | |
out_channels=16, | |
text_dim=32, | |
freq_dim=256, | |
ffn_dim=32, | |
num_layers=2, | |
cross_attn_norm=True, | |
qk_norm="rms_norm_across_heads", | |
rope_max_seq_len=32, | |
) | |
# TODO(aryan): Upload dummy checkpoints to the Hub so that we don't have to do this. | |
# Doing so overrides things like _keep_in_fp32_modules | |
transformer.to(self.transformer_dtype) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return {"transformer": transformer, "scheduler": scheduler} | |