text-to-map / app.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Update app.py
74087f2 verified
raw
history blame
15.6 kB
import os
import tempfile
import torch
import numpy as np
import gradio as gr
from PIL import Image
import cv2
from diffusers import DiffusionPipeline
import cupy as cp
from cupyx.scipy.ndimage import label as cp_label
from cupyx.scipy.ndimage import binary_dilation
from sklearn.cluster import DBSCAN
import trimesh
class GPUSatelliteModelGenerator:
def __init__(self, building_height=0.05):
self.building_height = building_height
# Move color arrays to GPU using cupy
self.shadow_colors = cp.array([
[31, 42, 76],
[58, 64, 92],
[15, 27, 56],
[21, 22, 50],
[76, 81, 99]
])
self.road_colors = cp.array([
[187, 182, 175],
[138, 138, 138],
[142, 142, 129],
[202, 199, 189]
])
self.water_colors = cp.array([
[167, 225, 217],
[67, 101, 97],
[53, 83, 84],
[47, 94, 100],
[73, 131, 135]
])
# Convert reference colors to HSV on GPU
self.shadow_colors_hsv = cp.asarray(cv2.cvtColor(
self.shadow_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.road_colors_hsv = cp.asarray(cv2.cvtColor(
self.road_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
self.water_colors_hsv = cp.asarray(cv2.cvtColor(
self.water_colors.get().reshape(-1, 1, 3).astype(np.uint8),
cv2.COLOR_RGB2HSV
).reshape(-1, 3))
# Normalize HSV values on GPU
for colors_hsv in [self.shadow_colors_hsv, self.road_colors_hsv, self.water_colors_hsv]:
colors_hsv[:, 0] = colors_hsv[:, 0] * 2
colors_hsv[:, 1:] = colors_hsv[:, 1:] / 255
# Color tolerances
self.shadow_tolerance = {'hue': 15, 'sat': 0.15, 'val': 0.12}
self.road_tolerance = {'hue': 10, 'sat': 0.12, 'val': 0.15}
self.water_tolerance = {'hue': 20, 'sat': 0.15, 'val': 0.20}
# Output colors (BGR for OpenCV)
self.colors = {
'black': cp.array([0, 0, 0]), # Shadows
'blue': cp.array([255, 0, 0]), # Water
'green': cp.array([0, 255, 0]), # Vegetation
'gray': cp.array([128, 128, 128]), # Roads
'brown': cp.array([0, 140, 255]), # Terrain
'white': cp.array([255, 255, 255]) # Buildings
}
self.min_area_for_clustering = 1000
self.residential_height_factor = 0.6
self.isolation_threshold = 0.6
@staticmethod
def gpu_color_distance_hsv(pixel_hsv, reference_hsv, tolerance):
"""HSV color distance calculation"""
pixel_h = pixel_hsv[0] * 2
pixel_s = pixel_hsv[1] / 255
pixel_v = pixel_hsv[2] / 255
# Calculate circular hue difference
hue_diff = cp.minimum(cp.abs(pixel_h - reference_hsv[0]),
360 - cp.abs(pixel_h - reference_hsv[0]))
# Calculate saturation and value differences with weighted importance
sat_diff = cp.abs(pixel_s - reference_hsv[1])
val_diff = cp.abs(pixel_v - reference_hsv[2])
# Combined distance check with adjusted weights
return cp.logical_and(
cp.logical_and(
hue_diff <= tolerance['hue'],
sat_diff <= tolerance['sat']
),
val_diff <= tolerance['val']
)
def segment_image_gpu(self, img):
"""GPU-accelerated image segmentation with improved road and shadow detection"""
# Transfer image to GPU
gpu_img = cp.asarray(img)
gpu_hsv = cp.asarray(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
height, width = img.shape[:2]
output = cp.zeros_like(gpu_img)
# Create a sliding window view for neighborhood analysis
pad = 2 # Equivalent to window_size=5 in segment.py
gpu_hsv_pad = cp.pad(gpu_hsv, ((pad, pad), (pad, pad), (0, 0)), mode='edge')
# Prepare flattened HSV data
hsv_pixels = gpu_hsv.reshape(-1, 3)
# Initialize masks
shadow_mask = cp.zeros((height * width,), dtype=bool)
road_mask = cp.zeros((height * width,), dtype=bool)
water_mask = cp.zeros((height * width,), dtype=bool)
# Improved color matching with adjusted tolerances
for ref_hsv in self.shadow_colors_hsv:
# Lower the threshold for shadows to catch more subtle variations
temp_tolerance = {
'hue': self.shadow_tolerance['hue'] * 1.2, # Slightly increased tolerance
'sat': self.shadow_tolerance['sat'] * 1.1,
'val': self.shadow_tolerance['val'] * 1.2
}
shadow_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
for ref_hsv in self.road_colors_hsv:
# Adjusted road detection with focus on value component
temp_tolerance = {
'hue': self.road_tolerance['hue'] * 1.3, # Increased hue tolerance
'sat': self.road_tolerance['sat'] * 1.2, # Increased saturation tolerance
'val': self.road_tolerance['val'] # Keep original value tolerance
}
road_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, temp_tolerance)
for ref_hsv in self.water_colors_hsv:
water_mask |= self.gpu_color_distance_hsv(hsv_pixels.T, ref_hsv, self.water_tolerance)
# Normalize HSV values for vegetation and terrain detection
h, s, v = hsv_pixels.T
h = h * 2 # Convert to 0-360 range
s = s / 255
v = v / 255
# Enhanced vegetation detection
vegetation_mask = ((h >= 40) & (h <= 150) & (s >= 0.15))
# Enhanced terrain detection
terrain_mask = ((h >= 10) & (h <= 30) & (s >= 0.15)) | \
((h >= 25) & (h <= 40) & (s >= 0.1) & (v <= 0.8)) # Added brown-gray detection
# Apply brightness-based corrections for roads
gray_mask = (s <= 0.2) & (v >= 0.4) & (v <= 0.85) # Detect grayish areas
road_mask |= gray_mask & ~(shadow_mask | water_mask | vegetation_mask | terrain_mask)
# Enhanced shadow detection using value component
dark_mask = (v <= 0.3) # Detect very dark areas
shadow_mask |= dark_mask & ~(water_mask | road_mask)
# Building mask (everything that's not another category)
building_mask = ~(shadow_mask | water_mask | road_mask | vegetation_mask | terrain_mask)
# Apply masks to create output
output_flat = output.reshape(-1, 3)
output_flat[shadow_mask] = self.colors['black']
output_flat[water_mask] = self.colors['blue']
output_flat[road_mask] = self.colors['gray']
output_flat[vegetation_mask] = self.colors['green']
output_flat[terrain_mask] = self.colors['brown']
output_flat[building_mask] = self.colors['white']
segmented = output.reshape(height, width, 3)
# Enhanced isolated pixel cleanup using morphological operations
kernel = cp.ones((3, 3), dtype=bool)
kernel[1, 1] = False
# Two-pass cleanup for better results
for _ in range(2):
for color_name, color_value in self.colors.items():
if cp.array_equal(color_value, self.colors['white']):
continue
# Create and dilate mask for current color
color_mask = cp.all(segmented == color_value, axis=2)
dilated = binary_dilation(color_mask, structure=kernel)
# Find isolated building pixels
building_pixels = cp.all(segmented == self.colors['white'], axis=2)
neighbor_count = binary_dilation(color_mask, structure=kernel).astype(int)
# More aggressive cleanup for truly isolated pixels
surrounded = (neighbor_count >= 5) & building_pixels # At least 5 neighbors of same color
# Update isolated pixels
segmented[surrounded] = color_value
return segmented
def estimate_heights_gpu(self, img, segmented):
"""GPU-accelerated height estimation"""
gpu_segmented = cp.asarray(segmented)
buildings_mask = cp.all(gpu_segmented == self.colors['white'], axis=2)
shadows_mask = cp.all(gpu_segmented == self.colors['black'], axis=2)
# Connected components labeling on GPU
labeled_array, num_features = cp_label(buildings_mask)
# Calculate areas using GPU
areas = cp.bincount(labeled_array.ravel())[1:] # Skip background
max_area = cp.max(areas) if len(areas) > 0 else 1
height_map = cp.zeros_like(labeled_array, dtype=cp.float32)
# Process each building
for label in range(1, num_features + 1):
building_mask = (labeled_array == label)
if not cp.any(building_mask):
continue
area = areas[label-1]
size_factor = 0.3 + 0.7 * (area / max_area)
# Calculate shadow influence
dilated = binary_dilation(building_mask, structure=cp.ones((5,5)))
shadow_ratio = cp.sum(dilated & shadows_mask) / cp.sum(dilated)
shadow_factor = 0.2 + 0.8 * shadow_ratio
# Height calculation based on size and shadows
final_height = size_factor * shadow_factor
height_map[building_mask] = final_height
return height_map.get() * 0.25
def generate_mesh_gpu(self, height_map, texture_img):
"""Generate 3D mesh using GPU-accelerated calculations"""
height_map_gpu = cp.asarray(height_map)
height, width = height_map.shape
# Generate vertex positions on GPU
x, z = cp.meshgrid(cp.arange(width), cp.arange(height))
vertices = cp.stack([x, height_map_gpu * self.building_height, z], axis=-1)
vertices = vertices.reshape(-1, 3)
# Normalize coordinates
scale = max(width, height)
vertices[:, 0] = vertices[:, 0] / scale * 2 - (width / scale)
vertices[:, 2] = vertices[:, 2] / scale * 2 - (height / scale)
vertices[:, 1] = vertices[:, 1] * 2 - 1
# Generate faces
i, j = cp.meshgrid(cp.arange(height-1), cp.arange(width-1), indexing='ij')
v0 = (i * width + j).flatten()
v1 = v0 + 1
v2 = ((i + 1) * width + j).flatten()
v3 = v2 + 1
faces = cp.vstack((
cp.column_stack((v0, v2, v1)),
cp.column_stack((v1, v2, v3))
))
# Generate UV coordinates
uvs = cp.zeros((vertices.shape[0], 2))
uvs[:, 0] = x.flatten() / (width - 1)
uvs[:, 1] = 1 - (z.flatten() / (height - 1))
# Convert to CPU for mesh creation
vertices_cpu = vertices.get()
faces_cpu = faces.get()
uvs_cpu = uvs.get()
# Create mesh
if len(texture_img.shape) == 3 and texture_img.shape[2] == 4:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGRA2RGB)
elif len(texture_img.shape) == 3:
texture_img = cv2.cvtColor(texture_img, cv2.COLOR_BGR2RGB)
mesh = trimesh.Trimesh(
vertices=vertices_cpu,
faces=faces_cpu,
visual=trimesh.visual.TextureVisuals(
uv=uvs_cpu,
image=Image.fromarray(texture_img)
)
)
return mesh
def generate_and_process_map(prompt: str) -> tuple[str | None, np.ndarray | None]:
"""Generate satellite image from prompt and convert to 3D model using GPU acceleration"""
try:
# Set dimensions and device
width = height = 1024
# Generate random seed
seed = np.random.randint(0, np.iinfo(np.int32).max)
# Set random seeds
torch.manual_seed(seed)
np.random.seed(seed)
# Generate satellite image using FLUX
generator = torch.Generator(device=device).manual_seed(seed)
generated_image = flux_pipe(
prompt=f"satellite view in the style of TOK, {prompt}",
width=width,
height=height,
num_inference_steps=25,
generator=generator,
guidance_scale=7.5
).images[0]
# Convert PIL Image to OpenCV format
cv_image = cv2.cvtColor(np.array(generated_image), cv2.COLOR_RGB2BGR)
# Initialize GPU-accelerated generator
generator = GPUSatelliteModelGenerator(building_height=0.09)
# Process image using GPU
print("Segmenting image using GPU...")
segmented_img = generator.segment_image_gpu(cv_image)
print("Estimating heights using GPU...")
height_map = generator.estimate_heights_gpu(cv_image, segmented_img)
# Generate mesh using GPU-accelerated calculations
print("Generating mesh using GPU...")
mesh = generator.generate_mesh_gpu(height_map, cv_image)
# Export to GLB
temp_dir = tempfile.mkdtemp()
output_path = os.path.join(temp_dir, 'output.glb')
mesh.export(output_path)
# Save segmented image to a temporary file
segmented_path = os.path.join(temp_dir, 'segmented.png')
cv2.imwrite(segmented_path, segmented_img.get())
return output_path, segmented_path
except Exception as e:
print(f"Error during generation: {str(e)}")
import traceback
traceback.print_exc()
return None, None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text to Map")
gr.Markdown("Generate a 3D map from text!")
with gr.Row():
prompt_input = gr.Text(
label="Enter your prompt",
placeholder="classic american town"
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary")
with gr.Row():
with gr.Column():
model_output = gr.Model3D(
label="Generated 3D Map",
clear_color=[0.0, 0.0, 0.0, 0.0],
)
with gr.Column():
segmented_output = gr.Image(
label="Segmented Map",
type="filepath"
)
# Event handler
generate_btn.click(
fn=generate_and_process_map,
inputs=[prompt_input],
outputs=[model_output, segmented_output],
api_name="generate"
)
if __name__ == "__main__":
# Initialize FLUX pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "jbilcke-hf/flux-satellite"
flux_pipe = DiffusionPipeline.from_pretrained(
repo_id,
torch_dtype=torch.bfloat16
)
flux_pipe.load_lora_weights(adapter_id)
flux_pipe = flux_pipe.to(device)
# Launch Gradio app
demo.queue().launch()