Spaces:
Runtime error
Runtime error
File size: 3,755 Bytes
49b1fb3 c5f5dc3 e112463 49b1fb3 05dabf4 e112463 f5ec40e e112463 49b1fb3 4dcc0d8 f5ec40e 413b78d 8ef8e62 f5ec40e 8ef8e62 0ff46a1 49b1fb3 8756061 0ff46a1 8756061 49b1fb3 90ae9dd 0b4f7e4 49b1fb3 6e7e500 49b1fb3 0ff46a1 f5ec40e 0ff46a1 f5ec40e 90ae9dd 0b4f7e4 49b1fb3 eec81fa 49b1fb3 0b4f7e4 49b1fb3 0ff46a1 4dcc0d8 0b4f7e4 4dcc0d8 49b1fb3 0b4f7e4 4dcc0d8 c5f5dc3 4dcc0d8 e112463 f5ec40e e112463 05dabf4 e112463 4dcc0d8 e112463 05dabf4 e112463 4dcc0d8 e112463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import glob
import os
import numpy as np
import pandas as pd
import tiktoken
from bs4 import BeautifulSoup
from openai.embeddings_utils import get_embedding
from buster.parser import HuggingfaceParser, Parser, SphinxParser
EMBEDDING_MODEL = "text-embedding-ada-002"
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
supported_docs = {
"mila": {
"base_url": "https://docs.mila.quebec/",
"filename": "documents_mila.tar.gz",
"parser": SphinxParser,
},
"orion": {
"base_url": "https://orion.readthedocs.io/en/stable/",
"filename": "documents_orion.tar.gz",
"parser": SphinxParser,
},
"pytorch": {
"base_url": "https://pytorch.org/docs/stable/",
"filename": "documents_pytorch.tar.gz",
"parser": SphinxParser,
},
"huggingface": {
"base_url": "https://huggingface.co/docs/transformers/",
"filename": "documents_huggingface.tar.gz",
"parser": HuggingfaceParser,
},
}
def get_all_documents(
root_dir: str, base_url: str, parser: Parser, min_section_length: int = 100, max_section_length: int = 2000
) -> pd.DataFrame:
"""Parse all HTML files in `root_dir`, and extract all sections.
Sections are broken into subsections if they are longer than `max_section_length`.
Sections correspond to `section` HTML tags that have a headerlink attached.
"""
files = glob.glob("**/*.html", root_dir=root_dir, recursive=True)
sections = []
urls = []
names = []
for file in files:
filepath = os.path.join(root_dir, file)
with open(filepath, "r") as f:
source = f.read()
soup = BeautifulSoup(source, "html.parser")
soup_parser = parser(soup, base_url, file, min_section_length, max_section_length)
sections_file, urls_file, names_file = soup_parser.parse()
sections.extend(sections_file)
urls.extend(urls_file)
names.extend(names_file)
documents_df = pd.DataFrame.from_dict({"name": names, "url": urls, "text": sections})
return documents_df
def get_file_extension(filepath: str) -> str:
return os.path.splitext(filepath)[1]
def write_documents(filepath: str, documents_df: pd.DataFrame):
ext = get_file_extension(filepath)
if ext == ".csv":
documents_df.to_csv(filepath, index=False)
elif ext in PICKLE_EXTENSIONS:
documents_df.to_pickle(filepath)
else:
raise ValueError(f"Unsupported format: {ext}.")
def read_documents(filepath: str) -> pd.DataFrame:
ext = get_file_extension(filepath)
if ext == ".csv":
df = pd.read_csv(filepath)
df["embedding"] = df.embedding.apply(eval).apply(np.array)
return df
elif ext in PICKLE_EXTENSIONS:
return pd.read_pickle(filepath)
else:
raise ValueError(f"Unsupported format: {ext}.")
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
# TODO are there unexpected consequences of allowing endoftext?
df["n_tokens"] = df.text.apply(lambda x: len(encoding.encode(x, allowed_special={"<|endoftext|>"})))
return df
def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame:
df["embedding"] = df.text.apply(lambda x: get_embedding(x, engine=EMBEDDING_MODEL))
return df
def generate_embeddings(filepath: str, output_file: str) -> pd.DataFrame:
# Get all documents and precompute their embeddings
df = read_documents(filepath)
df = compute_n_tokens(df)
df = precompute_embeddings(df)
write_documents(output_file, df)
return df
|