Spaces:
Runtime error
Runtime error
import glob | |
import os | |
import numpy as np | |
import pandas as pd | |
import tiktoken | |
from bs4 import BeautifulSoup | |
from openai.embeddings_utils import get_embedding | |
from buster.parser import HuggingfaceParser, Parser, SphinxParser | |
EMBEDDING_MODEL = "text-embedding-ada-002" | |
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002 | |
PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"] | |
supported_docs = { | |
"mila": { | |
"base_url": "https://docs.mila.quebec/", | |
"filename": "documents_mila.tar.gz", | |
"parser": SphinxParser, | |
}, | |
"orion": { | |
"base_url": "https://orion.readthedocs.io/en/stable/", | |
"filename": "documents_orion.tar.gz", | |
"parser": SphinxParser, | |
}, | |
"pytorch": { | |
"base_url": "https://pytorch.org/docs/stable/", | |
"filename": "documents_pytorch.tar.gz", | |
"parser": SphinxParser, | |
}, | |
"huggingface": { | |
"base_url": "https://huggingface.co/docs/transformers/", | |
"filename": "documents_huggingface.tar.gz", | |
"parser": HuggingfaceParser, | |
}, | |
} | |
def get_all_documents( | |
root_dir: str, base_url: str, parser: Parser, min_section_length: int = 100, max_section_length: int = 2000 | |
) -> pd.DataFrame: | |
"""Parse all HTML files in `root_dir`, and extract all sections. | |
Sections are broken into subsections if they are longer than `max_section_length`. | |
Sections correspond to `section` HTML tags that have a headerlink attached. | |
""" | |
files = glob.glob("**/*.html", root_dir=root_dir, recursive=True) | |
sections = [] | |
urls = [] | |
names = [] | |
for file in files: | |
filepath = os.path.join(root_dir, file) | |
with open(filepath, "r") as f: | |
source = f.read() | |
soup = BeautifulSoup(source, "html.parser") | |
soup_parser = parser(soup, base_url, file, min_section_length, max_section_length) | |
sections_file, urls_file, names_file = soup_parser.parse() | |
sections.extend(sections_file) | |
urls.extend(urls_file) | |
names.extend(names_file) | |
documents_df = pd.DataFrame.from_dict({"name": names, "url": urls, "text": sections}) | |
return documents_df | |
def get_file_extension(filepath: str) -> str: | |
return os.path.splitext(filepath)[1] | |
def write_documents(filepath: str, documents_df: pd.DataFrame): | |
ext = get_file_extension(filepath) | |
if ext == ".csv": | |
documents_df.to_csv(filepath, index=False) | |
elif ext in PICKLE_EXTENSIONS: | |
documents_df.to_pickle(filepath) | |
else: | |
raise ValueError(f"Unsupported format: {ext}.") | |
def read_documents(filepath: str) -> pd.DataFrame: | |
ext = get_file_extension(filepath) | |
if ext == ".csv": | |
df = pd.read_csv(filepath) | |
df["embedding"] = df.embedding.apply(eval).apply(np.array) | |
return df | |
elif ext in PICKLE_EXTENSIONS: | |
return pd.read_pickle(filepath) | |
else: | |
raise ValueError(f"Unsupported format: {ext}.") | |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame: | |
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING) | |
# TODO are there unexpected consequences of allowing endoftext? | |
df["n_tokens"] = df.text.apply(lambda x: len(encoding.encode(x, allowed_special={"<|endoftext|>"}))) | |
return df | |
def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame: | |
df["embedding"] = df.text.apply(lambda x: get_embedding(x, engine=EMBEDDING_MODEL)) | |
return df | |
def generate_embeddings(filepath: str, output_file: str) -> pd.DataFrame: | |
# Get all documents and precompute their embeddings | |
df = read_documents(filepath) | |
df = compute_n_tokens(df) | |
df = precompute_embeddings(df) | |
write_documents(output_file, df) | |
return df | |