Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,081 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
#!/usr/bin/python
#
from __future__ import print_function, absolute_import, division
import glob
import json
import os
import struct
import xml.etree.ElementTree as ET
from collections import defaultdict
from collections import namedtuple
import numpy as np
from matplotlib import cm
from skimage import io, filters
# get current date and time
# A point in a polygon
Point = namedtuple('Point', ['x', 'y'])
from abc import ABCMeta
from datasets.kitti_360.labels import labels, id2label, kittiId2label, name2label
MAX_N = 1000
def local2global(semanticId, instanceId):
globalId = semanticId*MAX_N + instanceId
if isinstance(globalId, np.ndarray):
return globalId.astype(np.int)
else:
return int(globalId)
def global2local(globalId):
semanticId = globalId // MAX_N
instanceId = globalId % MAX_N
if isinstance(globalId, np.ndarray):
return semanticId.astype(np.int), instanceId.astype(np.int)
else:
return int(semanticId), int(instanceId)
annotation2global = defaultdict()
# Abstract base class for annotation objects
class KITTI360Object:
__metaclass__ = ABCMeta
def __init__(self):
# the label
self.label = ""
# colormap
self.cmap = cm.get_cmap('Set1')
self.cmap_length = 9
def getColor(self, idx):
if idx==0:
return np.array([0,0,0])
return np.asarray(self.cmap(idx % self.cmap_length)[:3])*255.
def assignColor(self):
if self.semanticId>=0:
self.semanticColor = id2label[self.semanticId].color
if self.instanceId>0:
self.instanceColor = self.getColor(self.instanceId)
else:
self.instanceColor = self.semanticColor
# Class that contains the information of a single annotated object as 3D bounding box
class KITTI360Bbox3D(KITTI360Object):
# Constructor
def __init__(self):
KITTI360Object.__init__(self)
# the polygon as list of points
self.vertices = []
self.faces = []
self.lines = [[0,5],[1,4],[2,7],[3,6],
[0,1],[1,3],[3,2],[2,0],
[4,5],[5,7],[7,6],[6,4]]
# the ID of the corresponding object
self.semanticId = -1
self.instanceId = -1
self.annotationId = -1
# the window that contains the bbox
self.start_frame = -1
self.end_frame = -1
# timestamp of the bbox (-1 if statis)
self.timestamp = -1
# projected vertices
self.vertices_proj = None
self.meshes = []
# name
self.name = ''
def __str__(self):
return self.name
def generateMeshes(self):
self.meshes = []
if self.vertices_proj:
for fidx in range(self.faces.shape[0]):
self.meshes.append( [ Point(self.vertices_proj[0][int(x)], self.vertices_proj[1][int(x)]) for x in self.faces[fidx]] )
def parseOpencvMatrix(self, node):
rows = int(node.find('rows').text)
cols = int(node.find('cols').text)
data = node.find('data').text.split(' ')
mat = []
for d in data:
d = d.replace('\n', '')
if len(d)<1:
continue
mat.append(float(d))
mat = np.reshape(mat, [rows, cols])
return mat
def parseVertices(self, child):
transform = self.parseOpencvMatrix(child.find('transform'))
R = transform[:3,:3]
T = transform[:3,3]
vertices = self.parseOpencvMatrix(child.find('vertices'))
faces = self.parseOpencvMatrix(child.find('faces'))
vertices = np.matmul(R, vertices.transpose()).transpose() + T
self.vertices = vertices
self.faces = faces
self.R = R
self.T = T
def parseBbox(self, child):
semanticIdKITTI = int(child.find('semanticId').text)
self.semanticId = kittiId2label[semanticIdKITTI].id
self.instanceId = int(child.find('instanceId').text)
self.name = kittiId2label[semanticIdKITTI].name
self.start_frame = int(child.find('start_frame').text)
self.end_frame = int(child.find('end_frame').text)
self.timestamp = int(child.find('timestamp').text)
self.annotationId = int(child.find('index').text) + 1
global annotation2global
annotation2global[self.annotationId] = local2global(self.semanticId, self.instanceId)
self.parseVertices(child)
def parseStuff(self, child):
classmap = {'driveway': 'parking', 'ground': 'terrain', 'unknownGround': 'ground',
'railtrack': 'rail track', 'bigPole': 'pole', 'unknownObject': 'unknown object',
'smallPole': 'smallpole', 'trafficSign': 'traffic sign', 'trashbin': 'trash bin',
'guardrail': 'guard rail', 'trafficLight': 'traffic light', 'pedestrian': 'person',
'vendingmachine': 'vending machine', 'unknownConstruction': 'unknown construction',
'unknownVehicle': 'unknown vehicle'}
label = child.find('label').text
if label in classmap.keys():
label = classmap[label]
self.start_frame = int(child.find('start_frame').text)
self.end_frame = int(child.find('end_frame').text)
self.timestamp = int(child.find('timestamp').text)
self.semanticId = name2label[label].id
self.name = label
self.parseVertices(child)
# Class that contains the information of the point cloud a single frame
class KITTI360Point3D(KITTI360Object):
# Constructor
def __init__(self):
KITTI360Object.__init__(self)
self.vertices = []
self.vertices_proj = None
# the ID of the corresponding object
self.semanticId = -1
self.instanceId = -1
self.annotationId = -1
# name
self.name = ''
# color
self.semanticColor = None
self.instanceColor = None
def __str__(self):
return self.name
def generateMeshes(self):
pass
# The annotation of a whole image, including semantic and instance
class Annotation2D:
# Constructor
def __init__(self, colormap='Set1'):
# the width of that image and thus of the label image
self.imgWidth = 0
# the height of that image and thus of the label image
self.imgHeight = 0
self.instanceId = None
self.semanticId = None
self.instanceImg = None
self.semanticImg = None
# savedId = semanticId*N + instanceId
self.N = 1000
# colormap
self.cmap = cm.get_cmap(colormap)
if colormap == 'Set1':
self.cmap_length = 9
else:
raise "Colormap length need to be specified!"
def getColor(self, idx):
if idx==0:
return np.array([0,0,0])
return np.asarray(self.cmap(idx % self.cmap_length)[:3])*255.
# Load confidence map
def loadConfidence(self, imgPath):
self.confidenceMap = io.imread(imgPath)
self.confidenceMap = np.asarray(self.confidenceMap).astype(np.float)/255.
# Load instance id
def loadInstance(self, imgPath, gtType='instance', toImg=True, contourType='instance', semanticCt=True, instanceCt=True):
instanceId = io.imread(imgPath)
self.instanceId = np.asarray( instanceId % self.N )
self.semanticId = np.asarray( instanceId // self.N )
if not toImg:
return
if gtType=='semantic':
self.toSemanticImage()
elif gtType=='instance':
self.toInstanceImage()
if semanticCt or instanceCt:
self.getBoundary()
if gtType=='semantic' and semanticCt:
boundaryImg = self.toBoundaryImage(contourType=contourType, instanceOnly=False)
self.semanticImg = self.semanticImg * (1-boundaryImg) + \
np.ones_like(self.semanticImg) * boundaryImg * 255
if gtType=='instance' and instanceCt:
boundaryImg = self.toBoundaryImage(contourType=contourType, instanceOnly=True)
self.instanceImg = self.instanceImg * (1-boundaryImg) + \
np.ones_like(self.instanceImg) * boundaryImg * 255
def toSemanticImage(self):
self.semanticImg = np.zeros((self.semanticId.size, 3))
for label in labels:
mask = self.semanticId==label.id
mask = mask.flatten()
self.semanticImg[mask] = np.asarray(label.color)
self.semanticImg = self.semanticImg.reshape(*self.semanticId.shape, 3)
def toInstanceImage(self):
self.instanceImg = np.zeros((self.instanceId.size, 3))
uniqueId = np.unique(self.instanceId)
for uid in uniqueId:
mask = self.instanceId==uid
mask = mask.flatten()
self.instanceImg[mask] = np.asarray(self.getColor(uid))
self.instanceImg = self.instanceImg.reshape(*self.instanceId.shape, 3)
def getBoundary(self):
# semantic contours
uniqueId = np.unique(self.semanticId)
self.semanticContours = {}
for uid in uniqueId:
mask = (self.semanticId==uid).astype(np.uint8) * 255
mask_filter = filters.laplace(mask)
self.semanticContours[uid] = np.expand_dims(np.abs(mask_filter)>0, 2)
# instance contours
globalId = local2global(self.semanticId, self.instanceId)
uniqueId = np.unique(globalId)
self.instanceContours = {}
for uid in uniqueId:
mask = (globalId==uid).astype(np.uint8) * 255
mask_filter = filters.laplace(mask)
self.instanceContours[uid] = np.expand_dims(np.abs(mask_filter)>0, 2)
def toBoundaryImage(self, contourType='instance', instanceOnly=True):
if contourType=='semantic':
contours = self.semanticContours
assert(instanceOnly==False)
elif contourType=='instance':
contours = self.instanceContours
else:
raise ("Contour type can only be 'semantic' or 'instance'!")
if not instanceOnly:
boundaryImg = [contours[k] for k in contours.keys()]
else:
boundaryImg = [contours[k] for k in contours.keys() if global2local(k)[1]!=0]
boundaryImg = np.sum(np.asarray(boundaryImg), axis=0)
boundaryImg = boundaryImg>0
return boundaryImg
class Annotation2DInstance:
def __init__(self, gtPath, cam=0):
# trace the instances in all images
self.instanceDict = defaultdict(list)
#
instanceDictCached = os.path.join(gtPath, 'instanceDict.json')
print(instanceDictCached)
if os.path.isfile(instanceDictCached) and os.path.getsize(instanceDictCached)>0:
cachedDict = json.load( open(instanceDictCached) )
for k,v in cachedDict.items():
self.instanceDict[int(k)] = v
return
obj = Annotation2D()
gtPaths = glob.glob( os.path.join(gtPath, 'instance', '*.png') )
print (f'Found {len(gtPaths)} label images...')
for i,imgPath in enumerate(gtPaths):
if i%1000==0:
print(f'Processed {i}/{len(gtPaths)} label images...')
obj.loadInstance(imgPath, toImg=False)
globalId = local2global(obj.semanticId, obj.instanceId)
globalIdUnique = np.unique(globalId)
for idx in globalIdUnique:
self.instanceDict[int(idx)].append(os.path.basename(imgPath))
json.dump( self.instanceDict, open(instanceDictCached, 'w'))
# returns the paths that contains the specific instance
def __call__(self, semanticId, instanceId):
globalId = local2global(semanticId, instanceId)
return self.instanceDict[globalId]
# Meta class for KITTI360Bbox3D
class Annotation3D:
# Constructor
def __init__(self, labelDir='', sequence=''):
labelPath = glob.glob(os.path.join(labelDir, '*', '%s.xml' % sequence)) # train or test
if len(labelPath)!=1:
raise RuntimeError('%s does not exist! Please specify KITTI360_DATASET in your environment path.' % labelPath)
else:
labelPath = labelPath[0]
print('Loading %s...' % labelPath)
self.init_instance(labelPath)
def init_instance(self, labelPath):
# load annotation
tree = ET.parse(labelPath)
root = tree.getroot()
self.objects = defaultdict(dict)
self.num_bbox = 0
for child in root:
if child.find('transform') is None:
continue
obj = KITTI360Bbox3D()
obj.parseBbox(child)
globalId = local2global(obj.semanticId, obj.instanceId)
self.objects[globalId][obj.timestamp] = obj
self.num_bbox+=1
globalIds = np.asarray(list(self.objects.keys()))
semanticIds, instanceIds = global2local(globalIds)
for label in labels:
if label.hasInstances:
print(f'{label.name:<30}:\t {(semanticIds==label.id).sum()}')
print(f'Loaded {len(globalIds)} instances')
print(f'Loaded {self.num_bbox} boxes')
def __call__(self, semanticId, instanceId, timestamp=None):
globalId = local2global(semanticId, instanceId)
if globalId in self.objects.keys():
# static object
if len(self.objects[globalId].keys())==1:
if -1 in self.objects[globalId].keys():
return self.objects[globalId][-1]
else:
return None
# dynamic object
else:
return self.objects[globalId][timestamp]
else:
return None
class Annotation3DPly:
# parse fused 3D point cloud
def __init__(self, labelDir='', sequence='', isLabeled=True, isDynamic=False, showStatic=True):
if isLabeled and not isDynamic:
# x y z r g b semanticId instanceId isVisible confidence
self.fmt = '=fffBBBiiBf'
self.fmt_len = 28
elif isLabeled and isDynamic:
# x y z r g b semanticId instanceId isVisible timestamp confidence
self.fmt = '=fffBBBiiBif'
self.fmt_len = 32
elif not isLabeled and not isDynamic:
# x y z r g b
self.fmt = '=fffBBBB'
self.fmt_len = 16
else:
raise RuntimeError('Invalid binary format!')
# True for training data, False for testing data
self.isLabeled = isLabeled
# True for dynamic data, False for static data
self.isDynamic = isDynamic
# True for inspecting static data, False for inspecting dynamic data
self.showStatic = showStatic
pcdFolder = 'static' if self.showStatic else 'dynamic'
trainTestDir = 'train' if self.isLabeled else 'test'
self.pcdFileList = sorted(glob.glob(os.path.join(labelDir, trainTestDir, sequence, pcdFolder, '*.ply')))
print('Found %d ply files in %s' % (len(self.pcdFileList), sequence))
def readBinaryPly(self, pcdFile, n_pts=None):
with open(pcdFile, 'rb') as f:
plyData = f.readlines()
headLine = plyData.index(b'end_header\n')+1
plyData = plyData[headLine:]
plyData = b"".join(plyData)
n_pts_loaded = len(plyData)/self.fmt_len
# sanity check
if n_pts:
assert(n_pts_loaded==n_pts)
n_pts_loaded = int(n_pts_loaded)
data = []
for i in range(n_pts_loaded):
pts=struct.unpack(self.fmt, plyData[i*self.fmt_len:(i+1)*self.fmt_len])
data.append(pts)
data=np.asarray(data)
return data
def writeBinaryPly(self, pcdFile, data):
fmt = '=fffBBBiiB'
fmt_len = 24
n_pts = data.shape[0]
with open(pcdFile, 'wb') as f:
f.write(b'ply\n')
f.write(b'format binary_little_endian 1.0\n')
f.write(b'comment author Yiyi Liao\n')
f.write(b'element vertex %d\n' % n_pts)
f.write(b'property float x\n')
f.write(b'property float y\n')
f.write(b'property float z\n')
f.write(b'property uchar red\n')
f.write(b'property uchar green\n')
f.write(b'property uchar blue\n')
f.write(b'property int semantic\n')
class Annotation3DInstance(object):
instance_id = 0
labelId = 0
vert_count = 0
med_dist = -1
dist_conf = 0.0
def __init__(self, mesh_vert_instances, instance_id):
if (instance_id == -1):
return
self.instance_id = int(instance_id)
self.labelId = int(self.get_labelId(instance_id))
self.vert_count = int(self.get_instance_verts(mesh_vert_instances, instance_id))
def get_labelId(self, instance_id):
return int(instance_id // 1000)
def get_instance_verts(self, mesh_vert_instances, instance_id):
return (mesh_vert_instances == instance_id).sum()
def to_json(self):
return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)
def to_dict(self):
dict = {}
dict["instance_id"] = self.instance_id
dict["labelId"] = self.labelId
dict["vert_count"] = self.vert_count
dict["med_dist"] = self.med_dist
dict["dist_conf"] = self.dist_conf
return dict
def from_json(self, data):
self.instance_id = int(data["instance_id"])
self.labelId = int(data["labelId"])
self.vert_count = int(data["vert_count"])
if ("med_dist" in data):
self.med_dist = float(data["med_dist"])
self.dist_conf = float(data["dist_conf"])
def __str__(self):
return "("+str(self.instance_id)+")"
# a dummy example
if __name__ == "__main__":
ann = Annotation3D()
|