Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,995 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
import sys
import math
from typing import Callable, Mapping
import skimage.metrics as sk_metrics
import torch
import torch.nn.functional as F
from ignite.engine import Engine
from ignite.exceptions import NotComputableError
from ignite.metrics import Metric
from ignite.metrics.metric import reinit__is_reduced, sync_all_reduce
import pulp
def median_scaling(
depth_gt: torch.Tensor,
depth_pred: torch.Tensor,
):
# TODO: ensure this works for any batch size
mask = depth_gt > 0
depth_gt[mask] = torch.nan
depth_pred[mask] = torch.nan
scaling = torch.nanmedian(depth_gt.flatten(-2, -1), dim=-1) / torch.nanmedian(
depth_pred.flatten(-2, -1), dim=-1
)
depth_pred = scaling[..., None, None] * depth_pred
return depth_pred
def l2_scaling(
depth_gt: torch.Tensor,
depth_pred: torch.Tensor,
):
# TODO: ensure this works for any batch size
mask = depth_gt > 0
depth_pred = depth_pred
depth_gt_ = depth_gt[mask]
depth_pred_ = depth_pred[mask]
depth_pred_ = torch.stack((depth_pred_, torch.ones_like(depth_pred_)), dim=-1)
x = torch.linalg.lstsq(
depth_pred_.to(torch.float32), depth_gt_.unsqueeze(-1).to(torch.float32)
).solution.squeeze()
depth_pred = depth_pred * x[0] + x[1]
return depth_pred
def compute_depth_metrics(
depth_gt: torch.Tensor,
depth_pred: torch.Tensor,
scaling_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor] | None,
):
# TODO: find out if dim -3 is dummy dimension or part of the batch
# TODO: Test if works for batches of images
if scaling_fn:
depth_pred = scaling_fn(depth_gt, depth_pred)
depth_pred = torch.clamp(depth_pred, 1e-3, 80)
mask = depth_gt != 0
max_ratio = torch.maximum((depth_gt / depth_pred), (depth_pred / depth_gt))
a_scores = {}
for name, thresh in {"a1": 1.25, "a2": 1.25**2, "a3": 1.25**3}.items():
within_thresh = (max_ratio < thresh).to(torch.float)
within_thresh[~mask] = 0.0
a_scores[name] = within_thresh.flatten(-2, -1).sum(dim=-1) / mask.to(
torch.float
).flatten(-2, -1).sum(dim=-1)
square_error = (depth_gt - depth_pred) ** 2
square_error[~mask] = 0.0
log_square_error = (torch.log(depth_gt) - torch.log(depth_pred)) ** 2
log_square_error[~mask] = 0.0
abs_error = torch.abs(depth_gt - depth_pred)
abs_error[~mask] = 0.0
rmse = (
square_error.flatten(-2, -1).sum(dim=-1)
/ mask.to(torch.float).flatten(-2, -1).sum(dim=-1)
) ** 0.5
rmse_log = (
log_square_error.flatten(-2, -1).sum(dim=-1)
/ mask.to(torch.float).flatten(-2, -1).sum(dim=-1)
) ** 0.5
abs_rel = abs_error / depth_gt
abs_rel[~mask] = 0.0
abs_rel = (
abs_rel.flatten(-2, -1).sum(dim=-1)
/ mask.to(torch.float).flatten(-2, -1).sum(dim=-1)
) ** 0.5
sq_rel = square_error / depth_gt
sq_rel[~mask] = 0.0
sq_rel = (
sq_rel.flatten(-2, -1).sum(dim=-1)
/ mask.to(torch.float).flatten(-2, -1).sum(dim=-1)
) ** 0.5
metrics_dict = {
"abs_rel": abs_rel,
"sq_rel": sq_rel,
"rmse": rmse,
"rmse_log": rmse_log,
"a1": a_scores["a1"],
"a2": a_scores["a2"],
"a3": a_scores["a3"],
}
return metrics_dict
def compute_occ_metrics(
occupancy_pred: torch.Tensor, occupancy_gt: torch.Tensor, is_visible: torch.Tensor
):
# Only not visible points can be occupied
occupancy_gt &= ~is_visible
is_occupied_acc = (occupancy_pred == occupancy_gt).float().mean().item()
is_occupied_prec = occupancy_gt[occupancy_pred].float().mean().item()
is_occupied_rec = occupancy_pred[occupancy_gt].float().mean().item()
not_occupied_not_visible_ratio = (
((~occupancy_gt) & (~is_visible)).float().mean().item()
)
total_ie = ((~occupancy_gt) & (~is_visible)).float().sum().item()
ie_acc = (occupancy_pred == occupancy_gt)[(~is_visible)].float().mean().item()
ie_prec = (~occupancy_gt)[(~occupancy_pred) & (~is_visible)].float().mean()
ie_rec = (~occupancy_pred)[(~occupancy_gt) & (~is_visible)].float().mean()
total_no_nop_nv = (
((~occupancy_gt) & (~occupancy_pred))[(~is_visible) & (~occupancy_gt)]
.float()
.sum()
)
return {
"o_acc": is_occupied_acc,
"o_rec": is_occupied_rec,
"o_prec": is_occupied_prec,
"ie_acc": ie_acc,
"ie_rec": ie_rec,
"ie_prec": ie_prec,
"ie_r": not_occupied_not_visible_ratio,
"t_ie": total_ie,
"t_no_nop_nv": total_no_nop_nv,
}
def compute_nvs_metrics(data, lpips):
# TODO: This is only correct for batchsize 1!
# Following tucker et al. and others, we crop 5% on all sides
# idx of stereo frame (the target frame is always the "stereo" frame).
sf_id = data["rgb_gt"].shape[1] // 2
imgs_gt = data["rgb_gt"][:1, sf_id : sf_id + 1]
imgs_pred = data["fine"][0]["rgb"][:1, sf_id : sf_id + 1]
imgs_gt = imgs_gt.squeeze(0).permute(0, 3, 1, 2)
imgs_pred = imgs_pred.squeeze(0).squeeze(-2).permute(0, 3, 1, 2)
n, c, h, w = imgs_gt.shape
y0 = int(math.ceil(0.05 * h))
y1 = int(math.floor(0.95 * h))
x0 = int(math.ceil(0.05 * w))
x1 = int(math.floor(0.95 * w))
imgs_gt = imgs_gt[:, :, y0:y1, x0:x1]
imgs_pred = imgs_pred[:, :, y0:y1, x0:x1]
imgs_gt_np = imgs_gt.detach().squeeze().permute(1, 2, 0).cpu().numpy()
imgs_pred_np = imgs_pred.detach().squeeze().permute(1, 2, 0).cpu().numpy()
ssim_score = sk_metrics.structural_similarity(
imgs_pred_np, imgs_gt_np, multichannel=True, data_range=1, channel_axis=-1
)
psnr_score = sk_metrics.peak_signal_noise_ratio(
imgs_pred_np, imgs_gt_np, data_range=1
)
lpips_score = lpips(imgs_pred, imgs_gt, normalize=False).mean()
metrics_dict = {
"ssim": torch.tensor([ssim_score], device=imgs_gt.device),
"psnr": torch.tensor([psnr_score], device=imgs_gt.device),
"lpips": torch.tensor([lpips_score], device=imgs_gt.device),
}
return metrics_dict
def compute_dino_metrics(data):
dino_gt = data["dino_gt"]
if "dino_features_downsampled" in data["coarse"][0]:
dino_pred = data["coarse"][0]["dino_features_downsampled"].squeeze(-2)
else:
dino_pred = data["coarse"][0]["dino_features"].squeeze(-2)
l1_loss = F.l1_loss(dino_pred, dino_gt, reduction="none").mean(dim=(0, 2, 3, 4))
l2_loss = F.mse_loss(dino_pred, dino_gt, reduction="none").mean(dim=(0, 2, 3, 4))
cos_sim = F.cosine_similarity(dino_pred, dino_gt, dim=-1).mean(dim=(0, 2, 3))
metrics_dict = {
"l1": torch.tensor([l1_loss.mean()], device=dino_gt.device),
"l2": torch.tensor([l2_loss.mean()], device=dino_gt.device),
"cos_sim": torch.tensor([cos_sim.mean()], device=dino_gt.device)
}
for i in range(len(l1_loss)):
metrics_dict[f"l1_{i}"] = torch.tensor([l1_loss[i]], device=dino_gt.device)
metrics_dict[f"l2_{i}"] = torch.tensor([l2_loss[i]], device=dino_gt.device)
metrics_dict[f"cos_sim_{i}"] = torch.tensor([cos_sim[i]], device=dino_gt.device)
return metrics_dict
def compute_stego_metrics(data):
if "stego_corr" not in data["segmentation"]:
return {}
metrics_dict = {
"stego_self_corr": data["segmentation"]["stego_corr"]["stego_self_corr"],
"stego_nn_corr": data["segmentation"]["stego_corr"]["stego_nn_corr"],
"stego_random_corr": data["segmentation"]["stego_corr"]["stego_random_corr"],
}
return metrics_dict
def compute_seg_metrics(data, n_classes, gt_classes):
segs_gt = data["segmentation"]["target"].flatten()
valid_mask = segs_gt >= 0
segs_gt = segs_gt[valid_mask]
metrics_dict = {}
for result_key, result in data["segmentation"]["results"].items():
if "pseudo_segs_pred" in result:
segs_pred = result["pseudo_segs_pred"][:, 0].flatten()
else:
segs_pred = result["segs_pred"][:, 0].flatten()
segs_pred = segs_pred[valid_mask]
confusion_matrix = torch.bincount(n_classes * segs_gt + segs_pred,
minlength=n_classes * gt_classes).reshape(gt_classes, n_classes)
metrics_dict[result_key] = confusion_matrix
return metrics_dict
class MeanMetric(Metric):
def __init__(self, output_transform=lambda x: x["output"], device="cpu"):
super(MeanMetric, self).__init__(
output_transform=output_transform, device=device
)
self._sum = torch.tensor(0, device=self._device, dtype=torch.float32)
self._num_examples = 0
self.required_output_keys = ()
@reinit__is_reduced
def reset(self):
self._sum = torch.tensor(0, device=self._device, dtype=torch.float32)
self._num_examples = 0
super(MeanMetric, self).reset()
@reinit__is_reduced
def update(self, value):
if torch.any(torch.isnan(torch.tensor(value))):
raise ValueError("NaN values present in metric!")
self._sum += value
self._num_examples += 1
@sync_all_reduce("_num_examples:SUM", "_sum:SUM")
def compute(self):
if self._num_examples == 0:
raise NotComputableError(
"CustomAccuracy must have at least one example before it can be computed."
)
return self._sum.item() / self._num_examples
@torch.no_grad()
def iteration_completed(self, engine: Engine) -> None:
output = self._output_transform(
engine.state.output
) ## engine.state.output.keys() == dict_keys(['output', 'loss_dict', 'timings_dict', 'metrics_dict'])
self.update(output)
class DictMeanMetric(Metric):
def __init__(self, name: str, output_transform=lambda x: x["output"], device="cpu"):
self._name = name
self._sums: dict[str, torch.Tensor] = {}
self._num_examples = 0
self.required_output_keys = ()
super(DictMeanMetric, self).__init__(
output_transform=output_transform, device=device
)
@reinit__is_reduced
def reset(self):
self._sums = {}
self._num_examples = 0
super(DictMeanMetric, self).reset()
@reinit__is_reduced
def update(self, value):
num_examples = None
for key, metric in value.items():
if not key in self._sums:
self._sums[key] = torch.tensor(
0, device=self._device, dtype=torch.float32
)
if torch.any(torch.isnan(metric)):
# TODO: integrate into logging
print(f"Warining: Metric {self._name}/{key} has a nan value")
continue
self._sums[key] += metric.sum().to(self._device)
# TODO: check if this works with batches
if num_examples is None:
num_examples = metric.shape[0]
self._num_examples += 1
@sync_all_reduce("_num_examples:SUM", "_sum:SUM")
def compute(self):
if self._num_examples == 0:
raise NotComputableError(
"CustomAccuracy must have at least one example before it can be computed."
)
return {
f"{self._name}_{key}": metric.item() / self._num_examples
for key, metric in self._sums.items()
}
@torch.no_grad()
def iteration_completed(self, engine: Engine) -> None:
output = self._output_transform(engine.state.output["output"])
self.update(output)
def completed(self, engine: Engine, name: str) -> None:
"""Helper method to compute metric's value and put into the engine. It is automatically attached to the
`engine` with :meth:`~ignite.metrics.metric.Metric.attach`. If metrics' value is torch tensor, it is
explicitly sent to CPU device.
Args:
engine: the engine to which the metric must be attached
name: the name of the metric used as key in dict `engine.state.metrics`
.. changes from default implementation:
don't add whole result dict to engine state, but only the values
"""
result = self.compute()
if isinstance(result, Mapping):
if name in result.keys():
raise ValueError(
f"Argument name '{name}' is conflicting with mapping keys: {list(result.keys())}"
)
for key, value in result.items():
engine.state.metrics[key] = value
else:
if isinstance(result, torch.Tensor):
if len(result.size()) == 0:
result = result.item()
elif "cpu" not in result.device.type:
result = result.cpu()
engine.state.metrics[name] = result
class SegmentationMetric(DictMeanMetric):
def __init__(self, name: str, output_transform=lambda x: x["output"], device="cpu", assign_pseudo=True):
super(SegmentationMetric, self).__init__(
name, output_transform, device
)
self.assign_pseudo = assign_pseudo
# [road, sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky, person, rider, car, truck, bus, train, motorcycle, bicycle]
self.weights = torch.Tensor([4, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1])
self.weights = self.weights / self.weights.mean()
@reinit__is_reduced
def update(self, value):
for key, metric in value.items():
if not key in self._sums:
self._sums[key] = torch.zeros(metric.shape, device=self._device, dtype=torch.int32)
if torch.any(torch.isnan(metric)):
print(f"Warining: Metric {self._name}/{key} has a nan value")
continue
self._sums[key] += metric.to(self._device)
self._num_examples += 1
@sync_all_reduce("_num_examples:SUM", "_sum:SUM")
def compute(self):
if self._num_examples == 0:
raise NotComputableError(
"CustomAccuracy must have at least one example before it can be computed."
)
result = {}
for key, _sum in self._sums.items():
if self.assign_pseudo:
assignment = self._calculate_pseudo_label_assignment(_sum)
gt_classes = _sum.size(0)
confusion_matrix = torch.zeros((gt_classes, gt_classes), dtype=_sum.dtype)
confusion_matrix.scatter_add_(
1,
assignment.unsqueeze(0).expand(gt_classes, -1),
_sum
)
result[key + "_assignment"] = assignment
else:
confusion_matrix = _sum
# confusion_matrix axes: (actual, prediction)
true_positives = confusion_matrix.diag()
false_negatives = torch.sum(confusion_matrix, dim=1) - true_positives
false_positives = torch.sum(confusion_matrix, dim=0) - true_positives
denominator = true_positives + false_positives + false_negatives
per_class_iou = torch.where(denominator > 0, true_positives / denominator,
torch.zeros_like(denominator))
result[key + "_per_class_iou"] = per_class_iou
result[key + "_miou"] = per_class_iou.mean().item()
result[key + "_weighted_miou"] = (per_class_iou * self.weights).mean().item()
result[key + "_acc"] = confusion_matrix.diag().sum().item() / confusion_matrix.sum().item()
result[key + "_confusion_matrix"] = confusion_matrix
return result
def _calculate_pseudo_label_assignment(self, metric_matrix):
"""Implemented this way to generalize to over-segmentation"""
gt_classes, n_classes = metric_matrix.size()
costs = metric_matrix.cpu().numpy()
problem = pulp.LpProblem("CapacitatedAssignment", pulp.LpMaximize)
x = [[pulp.LpVariable(f"x_{i}_{j}", cat="Binary") for j in range(n_classes)] for i in
range(gt_classes)]
problem += pulp.lpSum(costs[i][j] * x[i][j] for i in range(gt_classes) for j in range(n_classes))
for j in range(n_classes):
problem += pulp.lpSum(x[i][j] for i in range(gt_classes)) == 1, f"AssignPseudoLabel_{j}"
for i in range(gt_classes):
problem += pulp.lpSum(x[i][j] for j in range(n_classes)) >= 1, f"MinAssignActualLabel_{i}"
problem.solve()
print("Status:", pulp.LpStatus[problem.status])
print("Objective:", pulp.value(problem.objective))
assignment = torch.zeros(n_classes, dtype=torch.int64)
for j in range(n_classes):
assignment[j] = next(i for i in range(gt_classes) if pulp.value(x[i][j]) == 1)
return assignment
class ConcatenateMetric(DictMeanMetric):
@reinit__is_reduced
def update(self, value, every_nth=100):
n_bins = 50
for key, metric in value.items():
if not key in self._sums:
self._sums[key] = torch.zeros((n_bins,), device=self._device, dtype=torch.int32)
if torch.any(torch.isnan(metric)):
print(f"Warning: Metric {self._name}/{key} has a nan value")
continue
metric_flat = metric.flatten().to(self._device)[::every_nth]
if key in self._sums:
self._sums[key] = torch.cat([self._sums[key], metric_flat])
else:
self._sums[key] = metric_flat
self._num_examples += 1
@sync_all_reduce("_num_examples:SUM", "_sum:SUM")
def compute(self):
return self._sums
class FG_ARI(Metric):
def __init__(self, output_transform=lambda x: x["output"], device="cpu"):
self._sum_fg_aris = torch.tensor(0, device=self._device, dtype=torch.float32)
self._num_examples = 0
self.required_output_keys = ()
super(FG_ARI, self).__init__(output_transform=output_transform, device=device)
@reinit__is_reduced
def reset(self):
self._sum_fg_aris = torch.tensor(0, device=self._device, dtype=torch.float32)
self._num_examples = 0
super(FG_ARI, self).reset()
@reinit__is_reduced
def update(self, data):
true_masks = data["segs"] # fc [n, h, w]
pred_masks = data["slot_masks"] # n, fc, sc, h, w
n, fc, sc, h, w = pred_masks.shape
true_masks = [
F.interpolate(tm.to(float).unsqueeze(1), (h, w), mode="nearest")
.squeeze(1)
.to(int)
for tm in true_masks
]
for i in range(n):
for f in range(fc):
true_mask = true_masks[f][i]
pred_mask = pred_masks[i, f]
true_mask = true_mask.view(-1)
pred_mask = pred_mask.view(sc, -1)
if torch.max(true_mask) == 0:
continue
foreground = true_mask > 0
true_mask = true_mask[foreground]
pred_mask = pred_mask[:, foreground].permute(1, 0)
true_mask = F.one_hot(true_mask)
# Filter out empty true groups
not_empty = torch.any(true_mask, dim=0)
true_mask = true_mask[:, not_empty]
# Filter out empty predicted groups
not_empty = torch.any(pred_mask, dim=0)
pred_mask = pred_mask[:, not_empty]
true_mask.unsqueeze_(0)
pred_mask.unsqueeze_(0)
_, n_points, n_true_groups = true_mask.shape
n_pred_groups = pred_mask.shape[-1]
if n_points <= n_true_groups and n_points <= n_pred_groups:
print(
"adjusted_rand_index requires n_groups < n_points.",
file=sys.stderr,
)
continue
true_group_ids = torch.argmax(true_mask, -1)
pred_group_ids = torch.argmax(pred_mask, -1)
true_mask_oh = true_mask.to(torch.float32)
pred_mask_oh = F.one_hot(pred_group_ids, n_pred_groups).to(
torch.float32
)
n_points = torch.sum(true_mask_oh, dim=[1, 2]).to(torch.float32)
nij = torch.einsum("bji,bjk->bki", pred_mask_oh, true_mask_oh)
a = torch.sum(nij, dim=1)
b = torch.sum(nij, dim=2)
rindex = torch.sum(nij * (nij - 1), dim=[1, 2])
aindex = torch.sum(a * (a - 1), dim=1)
bindex = torch.sum(b * (b - 1), dim=1)
expected_rindex = aindex * bindex / (n_points * (n_points - 1))
max_rindex = (aindex + bindex) / 2
ari = (rindex - expected_rindex) / (
max_rindex - expected_rindex + 0.000000000001
)
_all_equal = lambda values: torch.all(
torch.eq(values, values[..., :1]), dim=-1
)
both_single_cluster = torch.logical_and(
_all_equal(true_group_ids), _all_equal(pred_group_ids)
)
self._sum_fg_aris += torch.where(
both_single_cluster, torch.ones_like(ari), ari
).squeeze()
self._num_examples += 1
@sync_all_reduce("_num_examples:SUM", "_sum_fg_aris:SUM")
def compute(self):
if self._num_examples == 0:
raise NotComputableError(
"CustomAccuracy must have at least one example before it can be computed."
)
return self._sum_fg_aris.item() / self._num_examples
@torch.no_grad()
def iteration_completed(self, engine: Engine) -> None:
output = self._output_transform(engine.state.output)
self.update(output)
|