Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,071 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
import cv2
import numpy as np
import torch
from torchvision import transforms
from torch import nn
from torch.nn import init
import torch.nn.functional as F
import functools
import math
import warnings
def image_float_to_uint8(img):
"""
Convert a float image (0.0-1.0) to uint8 (0-255)
"""
vmin = np.min(img)
vmax = np.max(img)
if vmax - vmin < 1e-10:
vmax += 1e-10
img = (img - vmin) / (vmax - vmin)
img *= 255.0
return img.astype(np.uint8)
def cmap(img, color_map=cv2.COLORMAP_HOT):
"""
Apply 'HOT' color to a float image
"""
return cv2.applyColorMap(image_float_to_uint8(img), color_map)
def batched_index_select_nd(t, inds):
"""
Index select on dim 1 of a n-dimensional batched tensor.
:param t (batch, n, ...)
:param inds (batch, k)
:return (batch, k, ...)
"""
return t.gather(
1, inds[(...,) + (None,) * (len(t.shape) - 2)].expand(-1, -1, *t.shape[2:])
)
def batched_index_select_nd_last(t, inds):
"""
Index select on dim -1 of a >=2D multi-batched tensor. inds assumed
to have all batch dimensions except one data dimension 'n'
:param t (batch..., n, m)
:param inds (batch..., k)
:return (batch..., n, k)
"""
dummy = inds.unsqueeze(-2).expand(*inds.shape[:-1], t.size(-2), inds.size(-1))
out = t.gather(-1, dummy)
return out
def repeat_interleave(input, repeats, dim=0):
"""
Repeat interleave along axis 0
torch.repeat_interleave is currently very slow
https://github.com/pytorch/pytorch/issues/31980
"""
output = input.unsqueeze(1).expand(-1, repeats, *input.shape[1:])
return output.reshape(-1, *input.shape[1:])
def get_image_to_tensor_balanced(image_size=0):
ops = []
if image_size > 0:
ops.append(transforms.Resize(image_size))
ops.extend(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),]
)
return transforms.Compose(ops)
def get_mask_to_tensor():
return transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.0,), (1.0,))]
)
def homogeneous(points):
"""
Concat 1 to each point
:param points (..., 3)
:return (..., 4)
"""
return F.pad(points, (0, 1), "constant", 1.0)
def gen_grid(*args, ij_indexing=False):
"""
Generete len(args)-dimensional grid.
Each arg should be (lo, hi, sz) so that in that dimension points
are taken at linspace(lo, hi, sz).
Example: gen_grid((0,1,10), (-1,1,20))
:return (prod_i args_i[2], len(args)), len(args)-dimensional grid points
"""
return torch.from_numpy(
np.vstack(
np.meshgrid(
*(np.linspace(lo, hi, sz, dtype=np.float32) for lo, hi, sz in args),
indexing="ij" if ij_indexing else "xy"
)
)
.reshape(len(args), -1)
.T
)
def unproj_map(width, height, f, c=None, device="cpu", norm_dir=True, xy_offset=None):
"""
Get camera unprojection map for given image size.
[y,x] of output tensor will contain unit vector of camera ray of that pixel.
:param width image width
:param height image height
:param f focal length, either a number or tensor [fx, fy]
:param c principal point, optional, either None or tensor [fx, fy]
if not specified uses center of image
:return unproj map (height, width, 3)
"""
if c is None:
c = torch.tensor([[0.0, 0.0]], device=device)
elif isinstance(c, float):
c = torch.tensor([[c, c]], device=device)
elif len(c.shape) == 0:
c = c[None, None].expand(1, 2)
elif len(c.shape) == 1:
c = c.unsqueeze(-1).expand(1, 2)
if isinstance(f, float):
f = torch.tensor([[f, f]], device=device)
elif len(f.shape) == 0:
f = f[None, None].expand(1, 2)
elif len(f.shape) == 1:
f = f.unsqueeze(-1).expand(1, 2)
n = f.shape[0]
pixel_width = 2 / width
pixel_height = 2 / height
x = torch.linspace(-1 + .5 * pixel_width, 1 - .5 * pixel_width, width, dtype=torch.float32, device=device).view(1, 1, width).expand(n, height, width)
y = torch.linspace(-1 + .5 * pixel_height, 1 - .5 * pixel_height, height, dtype=torch.float32, device=device).view(1, height, 1).expand(n, height, width)
if xy_offset is not None:
x = x + xy_offset[0] * pixel_width
y = y + xy_offset[1] * pixel_height
xy_img = torch.stack((x, y), dim=-1)
xy = (xy_img - c.view(n, 1, 1, 2)) / f.view(n, 1, 1, 2)
z = torch.ones_like(x).unsqueeze(-1)
unproj = torch.cat((xy, z), dim=-1)
if norm_dir:
unproj /= torch.norm(unproj, dim=-1).unsqueeze(-1)
return unproj, xy_img
def coord_from_blender(dtype=torch.float32, device="cpu"):
"""
Blender to standard coordinate system transform.
Standard coordinate system is: x right y up z out (out=screen to face)
Blender coordinate system is: x right y in z up
:return (4, 4)
"""
return torch.tensor(
[[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]],
dtype=dtype,
device=device,
)
def coord_to_blender(dtype=torch.float32, device="cpu"):
"""
Standard to Blender coordinate system transform.
Standard coordinate system is: x right y up z out (out=screen to face)
Blender coordinate system is: x right y in z up
:return (4, 4)
"""
return torch.tensor(
[[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]],
dtype=dtype,
device=device,
)
def look_at(origin, target, world_up=np.array([0, 1, 0], dtype=np.float32)):
"""
Get 4x4 camera to world space matrix, for camera looking at target
"""
back = origin - target
back /= np.linalg.norm(back)
right = np.cross(world_up, back)
right /= np.linalg.norm(right)
up = np.cross(back, right)
cam_to_world = np.empty((4, 4), dtype=np.float32)
cam_to_world[:3, 0] = right
cam_to_world[:3, 1] = up
cam_to_world[:3, 2] = back
cam_to_world[:3, 3] = origin
cam_to_world[3, :] = [0, 0, 0, 1]
return cam_to_world
def get_cuda(gpu_id):
"""
Get a torch.device for GPU gpu_id. If GPU not available,
returns CPU device.
"""
return (
torch.device("cuda:%d" % gpu_id)
if torch.cuda.is_available()
else torch.device("cpu")
)
def masked_sample(masks, num_pix, prop_inside, thresh=0.5):
"""
:return (num_pix, 3)
"""
num_inside = int(num_pix * prop_inside + 0.5)
num_outside = num_pix - num_inside
inside = (masks >= thresh).nonzero(as_tuple=False)
outside = (masks < thresh).nonzero(as_tuple=False)
pix_inside = inside[torch.randint(0, inside.shape[0], (num_inside,))]
pix_outside = outside[torch.randint(0, outside.shape[0], (num_outside,))]
pix = torch.cat((pix_inside, pix_outside))
return pix
def bbox_sample(bboxes, num_pix):
"""
:return (num_pix, 3)
"""
image_ids = torch.randint(0, bboxes.shape[0], (num_pix,))
pix_bboxes = bboxes[image_ids]
x = (
torch.rand(num_pix) * (pix_bboxes[:, 2] + 1 - pix_bboxes[:, 0])
+ pix_bboxes[:, 0]
).long()
y = (
torch.rand(num_pix) * (pix_bboxes[:, 3] + 1 - pix_bboxes[:, 1])
+ pix_bboxes[:, 1]
).long()
pix = torch.stack((image_ids, y, x), dim=-1)
return pix
def gen_rays(poses, width, height, z_near, z_far, focal=None, c=None, norm_dir=True, xy_offset=None):
"""
Generate camera rays
:return (B, H, W, 8)
"""
num_images = poses.shape[0]
device = poses.device
cam_unproj_map, xy = unproj_map(width, height, focal, c=c, device=device, norm_dir=norm_dir, xy_offset=xy_offset)
cam_unproj_map = cam_unproj_map.expand(num_images, -1, -1, -1)
xy = xy.expand(num_images, -1, -1, -1)
cam_centers = poses[:, None, None, :3, 3].expand(-1, height, width, -1)
cam_raydir = torch.matmul(
poses[:, None, None, :3, :3], cam_unproj_map.unsqueeze(-1)
)[:, :, :, :, 0]
cam_nears = (
torch.tensor(z_near, device=device)
.view(1, 1, 1, 1)
.expand(num_images, height, width, -1)
)
cam_fars = (
torch.tensor(z_far, device=device)
.view(1, 1, 1, 1)
.expand(num_images, height, width, -1)
)
rays = torch.cat(
(cam_centers, cam_raydir, cam_nears, cam_fars), dim=-1
)
return rays, xy
def trans_t(t):
return torch.tensor(
[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, t], [0, 0, 0, 1],], dtype=torch.float32,
)
def rot_phi(phi):
return torch.tensor(
[
[1, 0, 0, 0],
[0, np.cos(phi), -np.sin(phi), 0],
[0, np.sin(phi), np.cos(phi), 0],
[0, 0, 0, 1],
],
dtype=torch.float32,
)
def rot_theta(th):
return torch.tensor(
[
[np.cos(th), 0, -np.sin(th), 0],
[0, 1, 0, 0],
[np.sin(th), 0, np.cos(th), 0],
[0, 0, 0, 1],
],
dtype=torch.float32,
)
def pose_spherical(theta, phi, radius):
"""
Spherical rendering poses, from NeRF
"""
c2w = trans_t(radius)
c2w = rot_phi(phi / 180.0 * np.pi) @ c2w
c2w = rot_theta(theta / 180.0 * np.pi) @ c2w
c2w = (
torch.tensor(
[[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]],
dtype=torch.float32,
)
@ c2w
)
return c2w
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_norm_layer(norm_type="instance", group_norm_groups=32):
"""Return a normalization layer
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
if norm_type == "batch":
norm_layer = functools.partial(
nn.BatchNorm2d, affine=True, track_running_stats=True
)
elif norm_type == "instance":
norm_layer = functools.partial(
nn.InstanceNorm2d, affine=False, track_running_stats=False
)
elif norm_type == "group":
norm_layer = functools.partial(nn.GroupNorm, group_norm_groups)
elif norm_type == "none":
norm_layer = None
else:
raise NotImplementedError("normalization layer [%s] is not found" % norm_type)
return norm_layer
def make_conv_2d(
dim_in,
dim_out,
padding_type="reflect",
norm_layer=None,
activation=None,
kernel_size=3,
use_bias=False,
stride=1,
no_pad=False,
zero_init=False,
):
conv_block = []
amt = kernel_size // 2
if stride > 1 and not no_pad:
raise NotImplementedError(
"Padding with stride > 1 not supported, use same_pad_conv2d"
)
if amt > 0 and not no_pad:
if padding_type == "reflect":
conv_block += [nn.ReflectionPad2d(amt)]
elif padding_type == "replicate":
conv_block += [nn.ReplicationPad2d(amt)]
elif padding_type == "zero":
conv_block += [nn.ZeroPad2d(amt)]
else:
raise NotImplementedError("padding [%s] is not implemented" % padding_type)
conv_block.append(
nn.Conv2d(
dim_in, dim_out, kernel_size=kernel_size, bias=use_bias, stride=stride
)
)
if zero_init:
nn.init.zeros_(conv_block[-1].weight)
# else:
# nn.init.kaiming_normal_(conv_block[-1].weight)
if norm_layer is not None:
conv_block.append(norm_layer(dim_out))
if activation is not None:
conv_block.append(activation)
return nn.Sequential(*conv_block)
def calc_same_pad_conv2d(t_shape, kernel_size=3, stride=1):
in_height, in_width = t_shape[-2:]
out_height = math.ceil(in_height / stride)
out_width = math.ceil(in_width / stride)
pad_along_height = max((out_height - 1) * stride + kernel_size - in_height, 0)
pad_along_width = max((out_width - 1) * stride + kernel_size - in_width, 0)
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left
return pad_left, pad_right, pad_top, pad_bottom
def same_pad_conv2d(t, padding_type="reflect", kernel_size=3, stride=1, layer=None):
"""
Perform SAME padding on tensor, given kernel size/stride of conv operator
assumes kernel/stride are equal in all dimensions.
Use before conv called.
Dilation not supported.
:param t image tensor input (B, C, H, W)
:param padding_type padding type constant | reflect | replicate | circular
constant is 0-pad.
:param kernel_size kernel size of conv
:param stride stride of conv
:param layer optionally, pass conv layer to automatically get kernel_size and stride
(overrides these)
"""
if layer is not None:
if isinstance(layer, nn.Sequential):
layer = next(layer.children())
kernel_size = layer.kernel_size[0]
stride = layer.stride[0]
return F.pad(
t, calc_same_pad_conv2d(t.shape, kernel_size, stride), mode=padding_type
)
def same_unpad_deconv2d(t, kernel_size=3, stride=1, layer=None):
"""
Perform SAME unpad on tensor, given kernel/stride of deconv operator.
Use after deconv called.
Dilation not supported.
"""
if layer is not None:
if isinstance(layer, nn.Sequential):
layer = next(layer.children())
kernel_size = layer.kernel_size[0]
stride = layer.stride[0]
h_scaled = (t.shape[-2] - 1) * stride
w_scaled = (t.shape[-1] - 1) * stride
pad_left, pad_right, pad_top, pad_bottom = calc_same_pad_conv2d(
(h_scaled, w_scaled), kernel_size, stride
)
if pad_right == 0:
pad_right = -10000
if pad_bottom == 0:
pad_bottom = -10000
return t[..., pad_top:-pad_bottom, pad_left:-pad_right]
def combine_interleaved(t, inner_dims=(1,), agg_type="average"):
if len(inner_dims) == 1 and inner_dims[0] == 1:
return t
t = t.reshape(-1, *inner_dims, *t.shape[1:])
if agg_type == "average":
t = torch.mean(t, dim=1)
elif agg_type == "max":
t = torch.max(t, dim=1)[0]
else:
raise NotImplementedError("Unsupported combine type " + agg_type)
return t
def psnr(pred, target):
"""
Compute PSNR of two tensors in decibels.
pred/target should be of same size or broadcastable
"""
mse = ((pred - target) ** 2).mean()
psnr = -10 * math.log10(mse)
return psnr
def quat_to_rot(q):
"""
Quaternion to rotation matrix
"""
batch_size, _ = q.shape
q = F.normalize(q, dim=1)
R = torch.ones((batch_size, 3, 3), device=q.device)
qr = q[:, 0]
qi = q[:, 1]
qj = q[:, 2]
qk = q[:, 3]
R[:, 0, 0] = 1 - 2 * (qj ** 2 + qk ** 2)
R[:, 0, 1] = 2 * (qj * qi - qk * qr)
R[:, 0, 2] = 2 * (qi * qk + qr * qj)
R[:, 1, 0] = 2 * (qj * qi + qk * qr)
R[:, 1, 1] = 1 - 2 * (qi ** 2 + qk ** 2)
R[:, 1, 2] = 2 * (qj * qk - qi * qr)
R[:, 2, 0] = 2 * (qk * qi - qj * qr)
R[:, 2, 1] = 2 * (qj * qk + qi * qr)
R[:, 2, 2] = 1 - 2 * (qi ** 2 + qj ** 2)
return R
def rot_to_quat(R):
"""
Rotation matrix to quaternion
"""
batch_size, _, _ = R.shape
q = torch.ones((batch_size, 4), device=R.device)
R00 = R[:, 0, 0]
R01 = R[:, 0, 1]
R02 = R[:, 0, 2]
R10 = R[:, 1, 0]
R11 = R[:, 1, 1]
R12 = R[:, 1, 2]
R20 = R[:, 2, 0]
R21 = R[:, 2, 1]
R22 = R[:, 2, 2]
q[:, 0] = torch.sqrt(1.0 + R00 + R11 + R22) / 2
q[:, 1] = (R21 - R12) / (4 * q[:, 0])
q[:, 2] = (R02 - R20) / (4 * q[:, 0])
q[:, 3] = (R10 - R01) / (4 * q[:, 0])
return q
def get_module(net):
"""
Shorthand for either net.module (if net is instance of DataParallel) or net
"""
if isinstance(net, torch.nn.DataParallel):
return net.module
else:
return net
# Nan safe entropy
def normalized_entropy(p, dim=-1, eps=2 ** (-8)):
H_max = math.log2(p.shape[dim])
# x log2 (x) -> 0 . Therefore, we can set log2 (x) to 0 if x is small enough.
# This should ensure numerical stability.
p_too_small = p < eps
p = p.clone()
p[p_too_small] = 1
plp = torch.log2(p) * p
plp[p_too_small] = 0
# This is the formula for the normalised entropy
entropy = -plp.sum(dim) / H_max
return entropy
def kl_div(p, q, dim=-1, eps=2 ** (-8)):
p_too_small = p < eps
q_too_small = q < eps
too_small = p_too_small | q_too_small
p = p.clone()
q = q.clone()
p[too_small] = 0
q[too_small] = 0
p = p / p.sum(dim, keepdims=True).detach()
q = q / q.sum(dim, keepdims=True).detach()
p[too_small] = 1
q[too_small] = 1
els = p * (p.log() - q.log())
els[too_small] = 0
kl_div = els.sum(dim)
return kl_div
|