File size: 21,689 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
from dataclasses import dataclass
import os
from random import shuffle
from typing import Any, Dict, List, Tuple
import yaml
from collections import Counter
from pathlib import Path

import cv2
import numpy as np
import torch
from scipy.spatial.transform import Rotation
from scenedino.common.io.images import FisheyeToPinholeSampler

from .base_dataset import BaseDataset


class KITTI360Dataset(BaseDataset):
    def __init__(
        self,
        data_path: Path,
        pose_path: Path,
        split_path: Path | None,
        target_image_size: Tuple[int, int] = (192, 640),
        return_stereo: bool = False,
        return_fisheye: bool = True,
        frame_count: int = 2,
        return_depth: bool = False,
        return_segmentation: bool = False,
        return_occupancy: bool = False,
        keyframe_offset: int = 0,
        dilation: int = 1,
        fisheye_rotation: int = 0,
        fisheye_offsets: List[int] = [10],
        stereo_offsets: List[int] = [1],
        is_preprocessed: bool = False,
    ) -> None:
        super().__init__()
        self.data_path = data_path
        self.pose_path = pose_path
        self.split_path = split_path
        self.target_image_size = target_image_size
        self.return_stereo = return_stereo
        self.return_fisheye = return_fisheye
        self.return_depth = return_depth
        self.return_occupancy = return_occupancy
        self.return_segmentation = return_segmentation
        self.frame_count = frame_count
        self.dilation = dilation

        self.fisheye_offsets = fisheye_offsets
        self.stereo_offsets = stereo_offsets

        self.keyframe_offset = keyframe_offset
        self._is_preprocessed = is_preprocessed

        # if isinstance(self.fisheye_rotation, float) or isinstance(
        #     self.fisheye_rotation, int
        # ):
        #     self.fisheye_rotation = (0, self.fisheye_rotation)
        # self.fisheye_rotation = tuple(self.fisheye_rotation)

        self._perspective_folder = (
            "data_rect"
            if not self._is_preprocessed
            else f"data_{self.target_image_size[0]}x{self.target_image_size[1]}"
        )
        self._calibs = self._load_calibs(self.data_path)

        self._timestamps, self._sequences = self._load_sequences(
            self.data_path, self.pose_path
        )

        self._datapoints = self._load_split(
            self.split_path, self._timestamps, self._sequences
        )

        self._resampler = FisheyeToPinholeSampler(
            self._calibs["K_00"], self.target_image_size
        )

        self.length = len(self._datapoints)

    @dataclass
    class Datapoint:
        sequence: str
        id: int
        pose: np.ndarray
        is_split: bool

    @staticmethod
    def _get_sequences(data_path: Path):
        all_sequences = []

        seqs_path = data_path / "data_2d_raw"
        for seq in seqs_path.iterdir():
            if not seq.is_dir():
                continue
            all_sequences.append(seq.name)

        return all_sequences

    @staticmethod
    def _load_calibs(data_path: Path):
        calib_folder = data_path / "calibration"
        cam_to_pose_file = calib_folder / "calib_cam_to_pose.txt"
        cam_to_velo_file = calib_folder / "calib_cam_to_velo.txt"
        intrinsics_file = calib_folder / "perspective.txt"
        fisheye_02_file = calib_folder / "image_02.yaml"
        fisheye_03_file = calib_folder / "image_03.yaml"

        cam_to_pose_data = {}
        with open(cam_to_pose_file, "r") as f:
            for line in f.readlines():
                key, value = line.split(":", 1)
                try:
                    cam_to_pose_data[key] = np.array(
                        [float(x) for x in value.split()], dtype=np.float32
                    )
                except ValueError:
                    pass

        cam_to_velo_data = None
        with open(cam_to_velo_file, "r") as f:
            line = f.readline()
            try:
                cam_to_velo_data = np.array(
                    [float(x) for x in line.split()], dtype=np.float32
                )
            except ValueError:
                pass

        intrinsics_data = {}
        with open(intrinsics_file, "r") as f:
            for line in f.readlines():
                key, value = line.split(":", 1)
                try:
                    intrinsics_data[key] = np.array(
                        [float(x) for x in value.split()], dtype=np.float32
                    )
                except ValueError:
                    pass

        with open(fisheye_02_file, "r") as f:
            f.readline()  # Skips first line that defines the YAML version
            fisheye_02_data = yaml.safe_load(f)

        with open(fisheye_03_file, "r") as f:
            f.readline()  # Skips first line that defines the YAML version
            fisheye_03_data = yaml.safe_load(f)

        im_size_rect = (
            int(intrinsics_data["S_rect_00"][1]),
            int(intrinsics_data["S_rect_00"][0]),
        )
        im_size_fish = (fisheye_02_data["image_height"], fisheye_02_data["image_width"])

        # Projection matrices
        # We use these projection matrices also when resampling the fisheye cameras.
        # This makes downstream processing easier, but it could be done differently.
        proj_rect_00 = np.reshape(intrinsics_data["P_rect_00"], (3, 4))
        proj_rect_01 = np.reshape(intrinsics_data["P_rect_01"], (3, 4))

        # Rotation matrices from raw to rectified -> Needs to be inverted later
        rotation_rect_00 = np.eye(4, dtype=np.float32)
        rotation_rect_01 = np.eye(4, dtype=np.float32)
        rotation_rect_00[:3, :3] = np.reshape(intrinsics_data["R_rect_00"], (3, 3))
        rotation_rect_01[:3, :3] = np.reshape(intrinsics_data["R_rect_01"], (3, 3))

        # Rotation matrices from resampled fisheye to raw fisheye
        # TODO: this is dummy
        fisheye_rotation = [0, 0]
        fisheye_rotation = np.array(fisheye_rotation).reshape((1, 2))
        R_02 = np.eye(4, dtype=np.float32)
        R_03 = np.eye(4, dtype=np.float32)
        R_02[:3, :3] = (
            Rotation.from_euler("xy", fisheye_rotation[:, [1, 0]], degrees=True)
            .as_matrix()
            .astype(np.float32)
        )
        R_03[:3, :3] = (
            Rotation.from_euler(
                "xy", fisheye_rotation[:, [1, 0]] * np.array([[1, -1]]), degrees=True
            )
            .as_matrix()
            .astype(np.float32)
        )

        # Load cam to pose transforms
        T_00_to_pose = np.eye(4, dtype=np.float32)
        T_01_to_pose = np.eye(4, dtype=np.float32)
        T_02_to_pose = np.eye(4, dtype=np.float32)
        T_03_to_pose = np.eye(4, dtype=np.float32)
        T_00_to_velo = np.eye(4, dtype=np.float32)

        T_00_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_00"], (3, 4))
        T_01_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_01"], (3, 4))
        T_02_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_02"], (3, 4))
        T_03_to_pose[:3, :] = np.reshape(cam_to_pose_data["image_03"], (3, 4))
        T_00_to_velo[:3, :] = np.reshape(cam_to_velo_data, (3, 4))

        # Compute cam to pose transforms for rectified perspective cameras
        T_rect_00_to_pose = T_00_to_pose @ np.linalg.inv(rotation_rect_00)
        T_rect_01_to_pose = T_01_to_pose @ np.linalg.inv(rotation_rect_01)

        # Compute cam to pose transform for fisheye cameras
        T_02_to_pose = T_02_to_pose @ R_02
        T_03_to_pose = T_03_to_pose @ R_03

        # Compute velo to cameras and velo to pose transforms
        T_velo_to_rect_00 = rotation_rect_00 @ np.linalg.inv(T_00_to_velo)
        T_velo_to_pose = T_rect_00_to_pose @ T_velo_to_rect_00
        T_velo_to_rect_01 = np.linalg.inv(T_rect_01_to_pose) @ T_velo_to_pose

        # TODO: possibly normalize image coordinates

        calibs = {
            "K_00": proj_rect_00[:3, :3],
            "K_01": proj_rect_01[:3, :3],
            "T_cam_to_pose": {
                "00": T_rect_00_to_pose,
                "01": T_rect_01_to_pose,
                "02": T_02_to_pose,
                "03": T_03_to_pose,
            },
            "T_velo_to_cam": {
                "00": T_velo_to_rect_00,
                "01": T_velo_to_rect_01,
            },
            "T_velo_to_pose": T_velo_to_pose,
            "fisheye": {
                "calib_02": fisheye_02_data,
                "calib_03": fisheye_03_data,
                "R_02": R_02[:3, :3],
                "R_03": R_03[:3, :3],
            },
            "im_size": im_size_rect,
        }

        return calibs

    def _load_sequences(
        self, data_path: Path, pose_path: Path
    ) -> tuple[dict[str, list[Datapoint]], list[str]]:
        sequences = self._get_sequences(data_path)
        timestamps = {"pinhole": [], "fisheye": []}
        for seq in sequences:
            try:
                pose_data = np.loadtxt(pose_path / seq / f"poses.txt")
            except FileNotFoundError:
                print(f"Ground truth poses are not avaialble for sequence {seq}.")
                continue
            ids_seq = pose_data[:, 0].astype(int)
            poses_seq = pose_data[:, 1:].astype(np.float32).reshape((-1, 3, 4))
            poses_seq = np.concatenate(
                (poses_seq, np.zeros_like(poses_seq[:, :1, :])), axis=1
            )
            poses_seq[:, 3, 3] = 1

            for id, pose in zip(ids_seq, poses_seq):
                file_name = f"{id:010d}.png"

                datapoint = self.Datapoint(
                    sequence=seq, id=id, pose=pose, is_split=False
                )
                timestamps["pinhole"].append(datapoint)

                if self.return_fisheye:
                    datapoint = self.Datapoint(
                        sequence=seq, id=id, pose=pose, is_split=False
                    )
                    timestamps["fisheye"].append(datapoint)

        return timestamps, sequences

    def _load_split(
        self,
        split_path: Path,
        timestamps: Dict[str, List[Datapoint]],
        sequences: List[str],
    ):
        timestamp_idx = {seq: {} for seq in sequences}
        for idx, timestamp in enumerate(timestamps["pinhole"]):
            timestamp_idx[timestamp.sequence][timestamp.id] = idx

        with open(split_path, "r") as f:
            lines = f.readlines()

        def split_line(line):
            segments = line.split(" ")
            seq = segments[0]
            id = int(segments[1])

            return seq, id

        whole_split = list(map(split_line, lines))
        whole_split.sort()

        cut_split = []
        for idx, (seq, id) in enumerate(whole_split[: -self.frame_count]):
            keep = True
            for offset in range(1, self.frame_count):
                if whole_split[idx + offset][0] != seq:
                    keep = False
                    break
                if whole_split[idx + offset][1] != id + offset:
                    keep = False
                    break
            t_idx = timestamp_idx[seq][id]
            timestamps["pinhole"][t_idx].is_split = True
            if self.return_fisheye:
                timestamps["fisheye"][t_idx].is_split = True

            if keep:
                cut_split.append((seq, id, timestamp_idx[seq][id]))

        return cut_split

    @staticmethod
    def _load_poses(pose_path: Path, sequences: List[str]):
        ids = {}
        poses = {}

        for seq in sequences:
            pose_file = pose_path / seq / f"poses.txt"

            try:
                pose_data = np.loadtxt(pose_file)
            except FileNotFoundError:
                print(f"Ground truth poses are not avaialble for sequence {seq}.")
                continue

            ids_seq = pose_data[:, 0].astype(int)
            poses_seq = pose_data[:, 1:].astype(np.float32).reshape((-1, 3, 4))
            poses_seq = np.concatenate(
                (poses_seq, np.zeros_like(poses_seq[:, :1, :])), axis=1
            )
            poses_seq[:, 3, 3] = 1

            ids[seq] = ids_seq
            poses[seq] = poses_seq
        return ids, poses

    def get_img_id_from_id(self, sequence, id):
        return self._img_ids[sequence][id]

    def _get_img_indices(self, index) -> Dict[str, List[Path]]:
        sequence, id, is_right = self._datapoints[index]
        seq_len = self._img_ids[sequence].shape[0]

        # TODO: reorganize the splits
        load_left, load_right = (
            not is_right
        ) or self.return_stereo, is_right or self.return_stereo

        shuffle(self.stereo_offsets)
        ## randomly sample fisheye in the time steps where it can see the occlusion with the stereo
        stereo_offsets = sorted(self.stereo_offsets[: self.frame_count - 1])

        ids = [id] + [
            max(min(id + offset * self.dilation, seq_len - 1), 0)
            for offset in stereo_offsets
        ]

        img_ids = [self.get_img_id_from_id(sequence, id) for id in ids]

        pinhole_paths: List[Path] = []
        for idx in img_ids:
            if load_left:
                pinhole_paths.append(
                    self.data_path
                    / "data_2d_raw"
                    / sequence
                    / "image_00"
                    / self.perspective_folder
                    / f"{idx:010d}.png"
                )
            if load_right:
                pinhole_paths.append(
                    self.data_path
                    / "data_2d_raw"
                    / sequence
                    / "image_01"
                    / self.perspective_folder
                    / f"{idx:010d}.png"
                )

        fisheye_paths: List[Path] = []
        if self.return_fisheye:
            shuffle(self.fisheye_offsets)
            fisheye_offsets = sorted(self.fisheye_offsets[: self.frame_count])
            ids_fish = [
                max(min(id + fisheye_offsets * self.dilation, seq_len - 1), 0)
                for offset in fisheye_offsets
            ]
            img_ids_fish = [self.get_img_id_from_id(sequence, id) for id in ids_fish]

            for idx in img_ids_fish:
                if load_left:
                    pinhole_paths.append(
                        self.data_path
                        / "data_2d_raw"
                        / sequence
                        / "image_02"
                        / self._fisheye_folder
                        / f"{idx:010d}.png"
                    )
                if load_right:
                    pinhole_paths.append(
                        self.data_path
                        / "data_2d_raw"
                        / sequence
                        / "image_03"
                        / self._fisheye_folder
                        / f"{idx:010d}.png"
                    )

        if self._is_preprocessed:
            pinhole_paths.extend(fisheye_paths)

        if self.return_fisheye and not self._is_preprocessed:
            return {"pinhole": pinhole_paths, "fisheye": fisheye_paths}
        else:
            return {"pinhole": pinhole_paths}

    def load_images(self, seq, img_ids, load_left, load_right, img_ids_fish=None):
        imgs_p_left = []
        imgs_f_left = []
        imgs_p_right = []
        imgs_f_right = []

        if img_ids_fish is None:
            img_ids_fish = img_ids

        for id in img_ids:
            if load_left:
                img_perspective = (
                    cv2.cvtColor(
                        cv2.imread(
                            os.path.join(
                                self.data_path,
                                "data_2d_raw",
                                seq,
                                "image_00",
                                self._perspective_folder,
                                f"{id:010d}.png",
                            )
                        ),
                        cv2.COLOR_BGR2RGB,
                    ).astype(np.float32)
                    / 255
                )
                imgs_p_left += [img_perspective]

            if load_right:
                img_perspective = (
                    cv2.cvtColor(
                        cv2.imread(
                            os.path.join(
                                self.data_path,
                                "data_2d_raw",
                                seq,
                                "image_01",
                                self._perspective_folder,
                                f"{id:010d}.png",
                            )
                        ),
                        cv2.COLOR_BGR2RGB,
                    ).astype(np.float32)
                    / 255
                )
                imgs_p_right += [img_perspective]

        for id in img_ids_fish:
            if load_left:
                img_fisheye = (
                    cv2.cvtColor(
                        cv2.imread(
                            os.path.join(
                                self.data_path,
                                "data_2d_raw",
                                seq,
                                "image_02",
                                self._fisheye_folder,
                                f"{id:010d}.png",
                            )
                        ),
                        cv2.COLOR_BGR2RGB,
                    ).astype(np.float32)
                    / 255
                )
                imgs_f_left += [img_fisheye]
            if load_right:
                img_fisheye = (
                    cv2.cvtColor(
                        cv2.imread(
                            os.path.join(
                                self.data_path,
                                "data_2d_raw",
                                seq,
                                "image_03",
                                self._fisheye_folder,
                                f"{id:010d}.png",
                            )
                        ),
                        cv2.COLOR_BGR2RGB,
                    ).astype(np.float32)
                    / 255
                )
                imgs_f_right += [img_fisheye]

        return imgs_p_left, imgs_f_left, imgs_p_right, imgs_f_right

    def process_img(
        self,
        img: np.ndarray,
        color_aug_fn=None,
        resampler: FisheyeToPinholeSampler | None = None,
    ):
        if resampler is not None and not self._is_preprocessed:
            img = torch.tensor(img).permute(2, 0, 1)
            img = resampler.resample(img)
        else:
            if self.target_image_size:
                img = cv2.resize(
                    img,
                    (self.target_image_size[1], self.target_image_size[0]),
                    interpolation=cv2.INTER_LINEAR,
                )
            img = np.transpose(img, (2, 0, 1))
            img = torch.tensor(img)

        if color_aug_fn is not None:
            img = color_aug_fn(img)

        img = img * 2 - 1
        return img

    def load_depth(self, seq, img_id, is_right):
        points = np.fromfile(
            os.path.join(
                self.data_path,
                "data_3d_raw",
                seq,
                "velodyne_points",
                "data",
                f"{img_id:010d}.bin",
            ),
            dtype=np.float32,
        ).reshape(-1, 4)
        points[:, 3] = 1.0

        T_velo_to_cam = self._calibs["T_velo_to_cam"]["00" if not is_right else "01"]
        K = self._calibs["K_perspective"]

        # project the points to the camera
        velo_pts_im = np.dot(K @ T_velo_to_cam[:3, :], points.T).T
        velo_pts_im[:, :2] = velo_pts_im[:, :2] / velo_pts_im[:, 2][..., None]

        # the projection is normalized to [-1, 1] -> transform to [0, height-1] x [0, width-1]
        velo_pts_im[:, 0] = np.round(
            (velo_pts_im[:, 0] * 0.5 + 0.5) * self.target_image_size[1]
        )
        velo_pts_im[:, 1] = np.round(
            (velo_pts_im[:, 1] * 0.5 + 0.5) * self.target_image_size[0]
        )

        # check if in bounds
        val_inds = (velo_pts_im[:, 0] >= 0) & (velo_pts_im[:, 1] >= 0)
        val_inds = (
            val_inds
            & (velo_pts_im[:, 0] < self.target_image_size[1])
            & (velo_pts_im[:, 1] < self.target_image_size[0])
        )
        velo_pts_im = velo_pts_im[val_inds, :]

        # project to image
        depth = np.zeros(self.target_image_size)
        depth[
            velo_pts_im[:, 1].astype(np.int32), velo_pts_im[:, 0].astype(np.int32)
        ] = velo_pts_im[:, 2]

        # find the duplicate points and choose the closest depth
        inds = (
            velo_pts_im[:, 1] * (self.target_image_size[1] - 1) + velo_pts_im[:, 0] - 1
        )
        dupe_inds = [item for item, count in Counter(inds).items() if count > 1]
        for dd in dupe_inds:
            pts = np.where(inds == dd)[0]
            x_loc = int(velo_pts_im[pts[0], 0])
            y_loc = int(velo_pts_im[pts[0], 1])
            depth[y_loc, x_loc] = velo_pts_im[pts, 2].min()
        depth[depth < 0] = 0

        return depth[None, :, :]

    def _process_image(
        self,
        img: np.ndarray,
        proj: np.ndarray,
        pose: np.ndarray,
        depth: np.ndarray | None,
        camera_type: str,
        aug_fn: dict[str, Any],
    ):
        return {
            "model": camera_type,
            "imgs": img,
            "proj": proj,
            "pose": pose,
            "depth": depth,
        }

    def _create_aug_fn(self) -> dict[str, Any]:
        return {}

    def __len__(self) -> int:
        return self.length