File size: 7,455 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from datetime import datetime
from pathlib import Path

import ignite.distributed as idist
import torch
from ignite.contrib.engines import common
from ignite.engine import Engine, Events
from ignite.utils import manual_seed, setup_logger
from torch.cuda.amp import autocast
from scenedino.common.logging import log_basic_info

from scenedino.common.array_operations import to

# from ignite.contrib.handlers.tensorboard_logger import *
from ignite.contrib.handlers import TensorboardLogger

from scenedino.common.metrics import DictMeanMetric, SegmentationMetric, ConcatenateMetric
from scenedino.training.handlers import VisualizationHandler
from scenedino.visualization.vis_2d import tb_visualize

from .wrapper import make_eval_fn


def base_evaluation(
    local_rank,
    config,
    get_dataflow,
    initialize,
):
    rank = idist.get_rank()
    if "eval_seed" in config:
        manual_seed(config["eval_seed"] + rank)
    else:
        manual_seed(config["seed"] + rank)
    device = idist.device()

    model_name = config["name"]
    logger = setup_logger(
        name=model_name, format="%(levelname)s: %(message)s"
    )  ## default

    output_path = config["output"]["path"]
    if rank == 0:
        unique_id = config["output"].get(
            "unique_id", datetime.now().strftime("%Y%m%d-%H%M%S")
        )
        folder_name = unique_id

        output_path = Path(output_path) / folder_name
        if not output_path.exists():
            output_path.mkdir(parents=True)

        config["output"]["path"] = output_path.as_posix()
        logger.info(f"Output path: {config['output']['path']}")

        if "cuda" in device.type:
            config["cuda device name"] = torch.cuda.get_device_name(local_rank)
    tb_logger = TensorboardLogger(log_dir=output_path)

    log_basic_info(logger, config)

    # Setup dataflow, model, optimizer, criterion
    test_loader = get_dataflow(config)  ## default

    if hasattr(test_loader, "dataset"):
        logger.info(f"Dataset length: Test: {len(test_loader.dataset)}")

    config["dataset"]["steps_per_epoch"] = len(test_loader)

    # ===================================================== MODEL =====================================================
    model = initialize(config)

    cp_path = config.get("checkpoint", None)

    if cp_path is not None:
        if not cp_path.endswith(".pt"):
            cp_path = Path(cp_path)
            cp_path = next(cp_path.glob("training*.pt"))
        checkpoint = torch.load(cp_path, map_location=device)
        logger.info(f"Loading checkpoint from path: {cp_path}")
        if "model" in checkpoint:
            model.load_state_dict(checkpoint["model"], strict=False)
        else:
            model.load_state_dict(checkpoint, strict=False)
    else:
        logger.warning("Careful, no model is loaded")
    model.to(device)

    logger.info(f"Model parameters: {sum(p.numel() for p in model.parameters())}")
    logger.info(f"Trainable model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")

    # Let's now setup evaluator engine to perform model's validation and compute metrics
    evaluator = create_evaluator(model, config=config, logger=logger, vis_logger=tb_logger)

    # evaluator.add_event_handler(
    #     Events.ITERATION_COMPLETED(every=config["log_every"]),
    #     log_metrics_current(logger, metrics),
    # )

    try:
        state = evaluator.run(test_loader, max_epochs=1)
        log_metrics(logger, state.times["COMPLETED"], "Test", state.metrics)
        logger.info(f"Checkpoint: {str(cp_path)}")
    except Exception as e:
        logger.exception("")
        raise e


# def log_metrics_current(logger, metrics):
#     def f(engine):
#         out_str = "\n" + "\t".join(
#             [
#                 f"{v.compute():.3f}".ljust(8)
#                 for v in metrics.values()
#                 if v._num_examples != 0
#             ]
#         )
#         out_str += "\n" + "\t".join([f"{k}".ljust(8) for k in metrics.keys()])
#         logger.info(out_str)

#     return f


def log_metrics(logger, elapsed, tag, metrics):
    metrics_output = "\n".join([f"\t{k}: {v}" for k, v in metrics.items()])
    logger.info(
        f"\nEvaluation time (seconds): {elapsed:.2f} - {tag} metrics:\n {metrics_output}"
    )


# def create_evaluator(model, metrics, config, tag="val"):
def create_evaluator(model, config, logger=None, vis_logger=None, tag="val"):
    with_amp = config["with_amp"]
    device = idist.device()

    metrics = {}
    for eval_config in config["evaluations"]:
        agg_type = eval_config.get("agg_type", None)
        if agg_type == "unsup_seg":
            metrics[eval_config["type"]] = SegmentationMetric(
                eval_config["type"], make_eval_fn(model, eval_config), assign_pseudo=True
            )
        elif agg_type == "sup_seg":
            metrics[eval_config["type"]] = SegmentationMetric(
                eval_config["type"], make_eval_fn(model, eval_config), assign_pseudo=False
            )
        elif agg_type == "concat":
            metrics[eval_config["type"]] = ConcatenateMetric(
                eval_config["type"], make_eval_fn(model, eval_config)
            )
        else:
            metrics[eval_config["type"]] = DictMeanMetric(
                eval_config["type"], make_eval_fn(model, eval_config)
            )

    @torch.no_grad()
    def evaluate_step(engine: Engine, data):
        # if not engine.state_dict["iteration"] % 10 == 0:      ## to prevent iterating whole testset for viz purpose
        model.eval()
        if "t__get_item__" in data:
            timing = {"t__get_item__": torch.mean(data["t__get_item__"]).item()}
        else:
            timing = {}

        data = to(data, device)

        with autocast(enabled=with_amp):
            data = model(data)  ## ! This is where the occupancy prediction is made.

        loss_metrics = {}

        return {
            "output": data,
            "loss_dict": loss_metrics,
            "timings_dict": timing,
            "metrics_dict": {},
        }

    evaluator = Engine(evaluate_step)
    evaluator.logger = logger  ##

    for name, metric in metrics.items():
        metric.attach(evaluator, name)

    eval_visualize = config.get("eval_visualize", [])
    if eval_visualize and vis_logger is not None:
        for name, vis_config in config["validation"].items():
            if "visualize" in vis_config:
                visualize = tb_visualize(
                    (model.renderer.net if hasattr(model, "renderer") else model.module.renderer.net),
                    None,
                    vis_config["visualize"],
                )
                def vis_wrapper(*args, **kwargs):
                    with autocast(enabled=with_amp):
                        return visualize(*args, **kwargs)

                def custom_vis_filter(engine, event):
                    return engine.state.iteration-1 in eval_visualize

                vis_logger.attach(
                    evaluator,
                    VisualizationHandler(
                        tag=tag,
                        visualizer=vis_wrapper,
                    ),
                    Events.ITERATION_COMPLETED(event_filter=custom_vis_filter),
                )

    if idist.get_rank() == 0 and (not config.get("with_clearml", False)):
        common.ProgressBar(desc=f"Evaluation ({tag})", persist=False).attach(evaluator)

    return evaluator