Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,780 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import math
from typing import Any, Callable, Protocol
import torch
import kornia
from torch import profiler
import torch.nn.functional as F
from scenedino.common.util import kl_div, normalized_entropy
from scenedino.losses.base_loss import BaseLoss
from scenedino.common.errors import (
alpha_consistency_uncert,
compute_l1ssim,
compute_edge_aware_smoothness,
compute_3d_smoothness,
compute_normalized_l1,
depth_smoothness_regularization,
depth_regularization,
alpha_regularization,
flow_regularization,
kl_prop,
max_alpha_inputframe_regularization,
surfaceness_regularization,
sdf_eikonal_regularization,
weight_entropy_regularization,
max_alpha_regularization,
density_grid_regularization,
alpha_consistency,
entropy_based_smoothness,
)
EPS = 1e-5
# TODO: need wrappers around the different losses as an interface to the data variable
def make_reconstruction_error(
criterion: str,
) -> Callable[[torch.Tensor, torch.Tensor], torch.Tensor]:
match criterion:
case "l1":
return lambda a, b: torch.mean(torch.nn.L1Loss(reduction="none")(a, b), dim=1)
case "l1+ssim":
return compute_l1ssim
case "l2":
return lambda a, b: torch.mean(torch.nn.MSELoss(reduction="none")(a, b) / 2, dim=1)
case "cosine":
return lambda a, b: 1 - torch.nn.CosineSimilarity(dim=1)(a, b)
case _:
raise ValueError(f"Unknown reconstruction error: {criterion}")
def make_regularization(
config, ignore_invalid: bool
) -> Callable[[Any, int], torch.Tensor]:
"""Make a regularization function from the config.
Args:
config (dict): config dict
Returns:
Callable[[torch.Tensor], torch.Tensor]: regularization function
"""
match config["type"]:
case "edge_aware_smoothness":
def _wrapper(data, scale):
gt_img = data["rgb_gt"][..., :3]
depth = data["coarse"][scale]["depth"].permute(1, 0, 2, 3)
_, _, h, w = depth.shape
gt_img = (
gt_img.unsqueeze(-2).permute(0, 1, 4, 5, 2, 3).reshape(-1, 3, h, w)
)
depth_input = 1 / depth.reshape(-1, 1, h, w).clamp(1e-3, 80)
depth_input = depth_input / torch.mean(depth_input, dim=[2, 3], keepdim=True)
return compute_edge_aware_smoothness(
gt_img, depth_input, temperature=1
).mean()
return _wrapper
case "dino_edge_aware_smoothness":
def _wrapper(data, scale):
gt_img = data["rgb_gt"][..., :3]
dino = data["coarse"][scale]["dino_features"]
_, _, h, w, _, c_dino = dino.shape
gt_img = gt_img.unsqueeze(-2).permute(0, 1, 4, 5, 2, 3).reshape(-1, 3, h, w)
dino_input = dino.permute(0, 1, 4, 5, 2, 3).reshape(-1, c_dino, h, w)
return compute_edge_aware_smoothness(
gt_img, dino_input, temperature=25
).mean()
return _wrapper
case _:
raise ValueError(f"Unknown regularization type: {config['type']}")
class PolicyCallable(Protocol):
def __call__(self, invalids: torch.Tensor, **kwargs) -> torch.Tensor:
...
def strict_policy(invalids: torch.Tensor, **kwargs: Any) -> torch.Tensor:
invalid = torch.all(torch.any(invalids > 0.5, dim=-2), dim=-1).unsqueeze(-1)
return invalid
def weight_guided_policy(invalids: torch.Tensor, **kwargs) -> torch.Tensor:
weights = kwargs["weights"]
invalid = torch.all(
(invalids.to(weights.dtype) * weights.unsqueeze(-1)).sum(-2) > 0.9,
dim=-1,
keepdim=True,
)
return invalid
def occ_and_weight_guided_policy(invalids: torch.Tensor, **kwargs) -> torch.Tensor:
weight_guided_invalid = weight_guided_policy(invalids, **kwargs)
# occs = 1 indicates that there can be a valid reprojection. Therefore, we have to negate it
occ = kwargs["occ"]
invalid = weight_guided_invalid | (~(occ.to(kwargs["weights"].dtype) > 0.5))
return invalid
def weight_guided_diverse_policy(invalids: torch.Tensor, **kwargs) -> torch.Tensor:
rgb_samps = kwargs["rgb_samps"]
ray_std = torch.std(rgb_samps, dim=-3).mean(-1)
weights = kwargs["weights"]
invalid = torch.all(
((invalids.to(torch.float32) * weights.unsqueeze(-1)).sum(-2) > 0.9)
| (ray_std < 0.01),
dim=-1,
keepdim=True,
)
return invalid
def no_policy(invalids: torch.Tensor, **kwargs) -> torch.Tensor:
invalid = torch.zeros_like(
torch.all(torch.any(invalids > 0.5, dim=-2), dim=-1).unsqueeze(-1),
dtype=torch.bool,
)
return invalid
def invalid_policy(
invalid_policy: str,
) -> PolicyCallable:
match invalid_policy:
case "strict":
return strict_policy
case "weight_guided":
return weight_guided_policy
case "weight_guided_diverse":
return weight_guided_diverse_policy
case "occ_weight_guided":
return occ_and_weight_guided_policy
case None | "none":
return no_policy
case _:
raise ValueError(f"Unknown invalid policy: {invalid_policy}")
# TODO: scale all of them with a lambda factor
class ReconstructionLoss(BaseLoss):
def __init__(self, config, use_automasking: bool = False) -> None:
super().__init__(config)
if config.get("fine", None) is None:
self.rgb_fine_crit = None
else:
self.rgb_fine_crit = make_reconstruction_error(
config["fine"].get("criterion", "l2")
)
self.dino_fine_crit = make_reconstruction_error(
config["fine"].get("dino_criterion", "l2")
)
self.lambda_fine = config["fine"].get("lambda", 1)
if config.get("coarse", None) is None:
self.rgb_coarse_crit = None
else:
self.rgb_coarse_crit = make_reconstruction_error(
config["coarse"].get("criterion", "l2")
)
self.dino_coarse_crit = make_reconstruction_error(
config["coarse"].get("dino_criterion", "l2")
)
self.lambda_coarse = config["coarse"].get("lambda", 1)
self.invalid_policy = invalid_policy(config.get("invalid_policy", "strict"))
self.ignore_invalid = self.invalid_policy is not no_policy
self.regularizations: list[tuple] = []
for regularization_config in config["regularizations"]:
reg_fn = make_regularization(regularization_config, self.ignore_invalid)
self.regularizations.append(
(regularization_config["type"], reg_fn, regularization_config["lambda"])
)
self.median_thresholding = config.get("median_thresholding", False)
self.reconstruct_dino = config.get("reconstruct_dino", False)
self.lambda_dino_coarse = config.get("lambda_dino_coarse", 1)
self.lambda_dino_fine = config.get("lambda_dino_fine", 1)
self.temperature_dino = config.get("temperature_dino", 1)
def get_loss_metric_names(self) -> list[str]:
loss_metric_names = ["rec_loss"]
if self.rgb_fine_crit is not None:
loss_metric_names.append("loss_rgb_fine")
if self.reconstruct_dino:
loss_metric_names.append("loss_dino_fine")
if self.rgb_coarse_crit is not None:
loss_metric_names.append("loss_rgb_coarse")
if self.reconstruct_dino:
loss_metric_names.append("loss_dino_coarse")
for regularization in self.regularizations:
loss_metric_names.append(regularization[0])
return loss_metric_names
def __call__(self, data) -> dict[str, torch.Tensor]:
# print(data["dino_gt"].shape)
# print(data["coarse"][0]["dino_features"].shape)
with profiler.record_function("loss_computation"):
n_scales = len(data["coarse"])
if self.rgb_coarse_crit is not None:
invalid_coarse = self.invalid_policy(
data["coarse"][0]["invalid"],
weights=data["coarse"][0]["weights"],
# rgb_samps=data["coarse"][0]["rgb_samps"],
)
loss_device = invalid_coarse.device
if self.rgb_fine_crit is not None:
invalid_fine = self.invalid_policy(
data["fine"][0]["invalid"],
weights=data["fine"][0]["weights"],
# rgb_samps=data["fine"][0]["rgb_samps"],
)
loss_device = invalid_fine.device
losses = {
name: torch.tensor(0.0, device=loss_device)
for name in self.get_loss_metric_names()
}
for scale in range(n_scales):
if self.rgb_coarse_crit is not None:
coarse = data["coarse"][scale]
rgb_coarse = coarse["rgb"]
if "dino_features_downsampled" in coarse:
dino_coarse = coarse["dino_features_downsampled"]
else:
dino_coarse = coarse["dino_features"]
if self.rgb_fine_crit is not None:
fine = data["fine"][scale]
rgb_fine = fine["rgb"]
if "dino_features_downsampled" in fine:
dino_fine = fine["dino_features_downsampled"]
else:
dino_fine = fine["dino_features"]
if "dino_artifacts" in data:
dino_artifacts = data["dino_artifacts"].unsqueeze(-2).expand(dino_coarse.shape)
dino_coarse = dino_coarse + dino_artifacts
rgb_gt = data["rgb_gt"].unsqueeze(-2).expand(rgb_coarse.shape)
dino_gt = data["dino_gt"].unsqueeze(-2).expand(dino_coarse.shape)
def rgb_loss(pred, gt, invalid, criterion):
# TODO: move the reshaping and selection to the wrapper, maybe other functions as well
b, pc, h, w, num_views, channels = pred.shape
loss = (
criterion(
pred.permute(0, 1, 4, 5, 2, 3).reshape(-1, channels, h, w),
gt.permute(0, 1, 4, 5, 2, 3).reshape(-1, channels, h, w),
)
.view(b, pc, num_views, h, w)
.permute(0, 1, 3, 4, 2)
.unsqueeze(-1)
)
loss = loss.amin(-2)
if self.ignore_invalid and invalid is not None:
loss = loss * (1 - invalid.to(torch.float32))
if self.median_thresholding:
threshold = torch.median(loss.view(b, -1), dim=-1)[0].view(
-1, 1, 1, 1, 1
)
loss = loss[loss <= threshold]
return loss.mean()
def dino_loss(pred, gt, invalid, criterion):
# TODO: move the reshaping and selection to the wrapper, maybe other functions as well
channels = pred.shape[-1]
loss = (
criterion(
pred.reshape(-1, channels),
gt.reshape(-1, channels),
)
)
# TODO: invalid feature handling
return loss.nanmean()
if self.rgb_coarse_crit is not None:
loss_coarse = rgb_loss(
rgb_coarse, rgb_gt, invalid_coarse, self.rgb_coarse_crit
)
losses["loss_rgb_coarse"] += loss_coarse.item()
losses["rec_loss"] += loss_coarse * self.lambda_coarse
if self.reconstruct_dino:
loss_coarse = dino_loss(
self.temperature_dino * dino_coarse, self.temperature_dino * dino_gt,
None, self.dino_coarse_crit
)
losses["loss_dino_coarse"] += loss_coarse.item()
losses["rec_loss"] += loss_coarse * self.lambda_coarse * self.lambda_dino_coarse
if self.rgb_fine_crit is not None:
loss_fine = rgb_loss(
rgb_fine, rgb_gt, invalid_fine, self.rgb_fine_crit
)
losses["loss_rgb_fine"] += loss_fine.item()
losses["rec_loss"] += loss_fine * self.lambda_fine
if self.reconstruct_dino:
loss_fine = dino_loss(
dino_fine, dino_gt, invalid_fine.unsqueeze(-1), self.dino_fine_crit
)
losses["loss_dino_fine"] += loss_fine.item()
losses["rec_loss"] += loss_fine * self.lambda_fine * self.lambda_dino_fine
for regularization in self.regularizations:
# TODO: make it properly work with the different scales
reg_loss = regularization[1](data, scale)
if reg_loss:
losses[regularization[0]] += reg_loss.item()
losses["rec_loss"] += reg_loss * regularization[2]
losses = {name: value / n_scales for name, value in losses.items()}
return losses
|