File size: 14,728 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import numpy as np
from typing import Optional, Tuple, List

import torch
import torchvision
from torch import nn
import torch.nn.functional as F

from .vit import dino_small8, dino_base8, dino_small, dino_base, dinov2_small, dinov2_base, dino_reg_small, dino_reg_base

from .decoder import NoDecoder, SimpleFeaturePyramidDecoder
from .dpt_head import DPTHead
from .downsampler import PatchSalienceDownsampler, BilinearDownsampler
from .upsampler import InterpolatedGT, MultiScaleCropGT, MultiScaleCropGT_kornia
from .dim_reduction import OrthogonalLinearDimReduction, MlpDimReduction, NoDimReduction
from .visualization import VisualizationModule


def build_encoder(backbone: str, image_size: Tuple[int, int], intermediate_features: List[int], key_features: bool, version: str):
    match backbone:
        case "vit-s" | "vit-b" | "fit3d-s":
            return DINOv2Encoder(backbone, 
                                 image_size,
                                 intermediate_features=intermediate_features,
                                 key_features=key_features,
                                 version=version)
        case _:
            raise NotImplementedError


def build_decoder(decoder_arch: str, patch_size: int, image_size: Tuple[int, int], latent_size: int, num_ch_enc: List[int], decoder_out_dim: int):
    match decoder_arch:
        case "nearest" | "bilinear" | "bicubic":
            return NoDecoder(image_size,
                             interpolation=decoder_arch,
                             normalize_features=True)
        case "spf":
            # TODO: SPF with patch size 8 is not implemented yet
            num_ch_dec = np.array([128, 128, 256, 256, 512])
            scales = range(4)
            return SimpleFeaturePyramidDecoder(latent_size=latent_size,
                                               num_ch_enc=num_ch_enc,
                                               num_ch_dec=num_ch_dec,
                                               d_out=decoder_out_dim,
                                               scales=scales,
                                               use_skips=True,
                                               device="cuda")
        case "dpt":
            return DPTHead(embed_dims=latent_size,
                           post_process_channels=num_ch_enc,
                           readout_type="ignore",
                           patch_size=patch_size,
                           d_out=decoder_out_dim,
                           expand_channels=False)
        case _:
            raise NotImplementedError


def build_downsampler(arch: str, dim: int, patch_size: int):
    match arch:
        case "featup":
            return PatchSalienceDownsampler(dim, patch_size=patch_size, normalize_features=True)
        case "bilinear":
            return BilinearDownsampler(patch_size=patch_size)
        case _:
            raise NotImplementedError


def build_gt_upsampling_wrapper(arch: str, gt_encoder: nn.Module, image_size: Tuple[int, int]):
    match arch:
        case "nearest" | "bilinear" | "bicubic":
            return InterpolatedGT(arch, gt_encoder, image_size)
        case "multiscale-crop":
            return MultiScaleCropGT_kornia(gt_encoder, num_views=4, image_size=image_size)
        case _:
            raise NotImplementedError


def build_dim_reduction(arch: str, full_channels: int, reduced_channels: int):
    match arch:
        case "none":
            return NoDimReduction(full_channels, reduced_channels)
        case "mlp":
            return MlpDimReduction(full_channels, reduced_channels, latent_channels=128)
        case "orthogonal-linear":
            return OrthogonalLinearDimReduction(full_channels, reduced_channels)
        case _:
            raise NotImplementedError


class DINOv2Module(nn.Module):
    def __init__(self,
                 mode: str,                                 # downsample-prediction, upsample-gt
                 decoder_arch: str,                         # nearest, bilinear, sfp, dpt
                 upsampler_arch: Optional[str],             # nearest, bilinear, multiscale-crop
                 downsampler_arch: Optional[str],           # sample-center, featup
                 encoder_arch: str,                         # vit-s, vit-b
                 encoder_freeze: bool,
                 flip_avg_gt: bool,
                 dim_reduction_arch: str,                   # orthogonal-linear, mlp
                 num_ch_enc: np.array,
                 intermediate_features: List[int],
                 decoder_out_dim: int,
                 dino_pca_dim: int,
                 image_size: Tuple[int, int],
                 key_features: bool,
                 dino_version: str,                         # v1, v2, reg, fit3d
                 separate_gt_version: Optional[str],        # v1, v2, reg, fit3d, None (reuses encoder)
                 ):

        super().__init__()

        self.encoder = build_encoder(encoder_arch, image_size, intermediate_features, key_features, dino_version)
        self.flip_avg_gt = flip_avg_gt

        if encoder_freeze or separate_gt_version is None:
            self.encoder_frozen = True
            for p in self.encoder.parameters(True):
                p.requires_grad = False
        else:
            self.encoder_frozen = False

        self.decoder = build_decoder(decoder_arch,
                                     self.encoder.patch_size,
                                     image_size,
                                     self.encoder.latent_size,
                                     num_ch_enc,
                                     decoder_out_dim)

        if separate_gt_version is None:
            self.gt_encoder = self.encoder
        else:
            self.gt_encoder = build_encoder(encoder_arch, image_size, [], key_features, separate_gt_version)
            for p in self.gt_encoder.parameters(True):
                p.requires_grad = False

        # General way of creating loss
        if mode == "downsample-prediction":
            assert upsampler_arch is None
            self.downsampler = build_downsampler(downsampler_arch, self.gt_encoder.latent_size, self.gt_encoder.patch_size)
            self.gt_wrapper = None

        elif mode == "upsample-gt":
            assert downsampler_arch is None
            self.downsampler = None
            self.gt_wrapper = build_gt_upsampling_wrapper(upsampler_arch, self.gt_encoder, image_size)

        else:
            raise NotImplementedError

        self.extra_outs = 0
        self.latent_size = decoder_out_dim

        self.dino_pca_dim = dino_pca_dim
        self.dim_reduction = build_dim_reduction(dim_reduction_arch, self.encoder.latent_size, dino_pca_dim)
        self.visualization = VisualizationModule(self.encoder.latent_size)

    def forward(self, x, ground_truth=False):
        if ground_truth:
            with torch.no_grad():
                if self.gt_wrapper is not None:
                    gt_0 = self.gt_wrapper(x)
                    if self.flip_avg_gt:
                        gt_flipped = self.gt_wrapper(x.flip([-1]))
                        gt_avg = [F.normalize(gt_flipped[i].flip([-1]) + gt_0[i], dim=1) for i in range(len(gt_0))]
                        return gt_avg
                    else:
                        return gt_0
                else:
                    gt_0 = self.gt_encoder(x)[-1]
                    if self.flip_avg_gt:
                        gt_flipped = self.gt_encoder(x.flip([-1]))[-1]
                        gt_avg = F.normalize(gt_flipped.flip([-1]) + gt_0, dim=1)
                        return [gt_avg]
                    else:
                        return [gt_0]
        else:
            if self.encoder_frozen:
                with torch.no_grad():
                    patch_features = self.encoder(x)
            else:
                patch_features = self.encoder(x)
            return self.decoder(patch_features)

    def downsample(self, x, mode="patch"):
        if self.downsampler is None:
            return None
        else:
            return self.downsampler(x, mode)

    def expand_dim(self, features):
        return self.dim_reduction.transform_expand(features)

    def fit_visualization(self, features, refit=True):
        return self.visualization.fit_pca(features, refit)

    def transform_visualization(self, features, norm=False, from_dim=0):
        return self.visualization.transform_pca(features, norm, from_dim)

    def fit_transform_kmeans_visualization(self, features):
        return self.visualization.fit_transform_kmeans_batch(features)

    @classmethod
    def from_conf(cls, conf):
        return cls(
            mode=conf.mode,
            decoder_arch=conf.decoder_arch,
            upsampler_arch=conf.get("upsampler_arch", None),
            downsampler_arch=conf.get("downsampler_arch", None),
            encoder_arch=conf.encoder_arch,
            encoder_freeze=conf.encoder_freeze,
            flip_avg_gt=conf.get("flip_avg_gt", False),
            dim_reduction_arch=conf.dim_reduction_arch,
            num_ch_enc=conf.get("num_ch_enc", None),
            intermediate_features=conf.get("intermediate_features", []),
            decoder_out_dim=conf.decoder_out_dim,
            dino_pca_dim=conf.dino_pca_dim,
            image_size=conf.image_size,
            key_features=conf.key_features,
            dino_version=conf.get("version", "reg"),
            separate_gt_version=conf.get("separate_gt_version", None)
        )


def _normalize_input(x):
    norm_tf = torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
    return norm_tf(x / 2 + 0.5)


class DINOv2Encoder(nn.Module):
    def __init__(self, backbone, image_size, intermediate_features, key_features, version):
        super().__init__()

        self.image_size = image_size
        if version in ["fit3d", "v2", "reg"]:
            # "Internal" patch size 14 is resized to "External" patch size 16 for decoder!
            self.patch_size = 16
            adjusted_image_size = (image_size[0] * 14 // self.patch_size, image_size[1] * 14 // self.patch_size)
            self.resize_tf = torchvision.transforms.Resize(size=adjusted_image_size,
                                                        interpolation=torchvision.transforms.InterpolationMode.BILINEAR)
        elif version == "v1":
            self.patch_size = 8
            adjusted_image_size = self.image_size
            self.resize_tf = None
        elif version == "v1_16":
            self.patch_size = 16
            adjusted_image_size = self.image_size
            self.resize_tf = None
        else:
            raise NotImplementedError()
        
        self.key_features = key_features
        self.backbone = backbone
        self.version = version

        self.model, self.latent_size = self.load_model(backbone, version, adjusted_image_size, intermediate_features)
        
    def forward(self, x):
        x = _normalize_input(x)
        if self.resize_tf:
            x = self.resize_tf(x)

        output_dict = self.model(x)
        if self.version == "fit3d":
            output_dict = self.model.output_dict

        inter_keys = [output_key for output_key in output_dict if output_key.startswith("intermediate_features.")]
        result = []

        for inter_key in sorted(inter_keys):
            output = output_dict[inter_key].transpose(-1, -2)  # (L, B, C_dino, H*W)
            output_grid = output.view(*output.size()[:-1],
                                      x.size(-2) // self.model.patch_size,
                                      x.size(-1) // self.model.patch_size)
            result.append(output_grid)

        if self.key_features:
            output = output_dict['key_features'].transpose(-1, -2).flatten(1, 2)
            output = F.normalize(output, dim=1)
        else:
            output = output_dict['features_normalized'].transpose(-1, -2)
            output = F.normalize(output, dim=1)

        output_grid = output.view(*output.size()[:-1],
                                  x.size(-2) // self.model.patch_size,
                                  x.size(-1) // self.model.patch_size)
        result.append(output_grid)
        return result
    
    def load_model(self, backbone, version, image_size, intermediate_features):
        if version == "fit3d":
            if backbone == "vit-s":
                model_name = "dinov2_reg_small_fine"
            elif backbone == "vit-b":
                model_name = "dinov2_reg_base_fine"
            else:
                raise NotImplementedError()
            
            def get_features(model, key):
                def hook(blk, input, output):
                    model.output_dict[key] = output[:, 5:]
                return hook

            model = torch.hub.load("ywyue/FiT3D", model_name).to("cuda")
            model.norm.register_forward_hook(get_features(model, f"features_normalized"))
            for i, _blk in enumerate(model.blocks):
                if i in intermediate_features:
                    _blk.register_forward_hook(get_features(model, f"intermediate_features.{i}"))
            model.output_dict = {}
            model.patch_size = 14

        elif version == "v1" and backbone == "vit-s":
            model = dino_small8(image_size=image_size, intermediate_features=intermediate_features)
        elif version == "v1" and backbone == "vit-b":
            model = dino_base8(image_size=image_size, intermediate_features=intermediate_features)

        elif version == "v1_16" and backbone == "vit-s":
            model = dino_small(image_size=image_size, intermediate_features=intermediate_features)
        elif version == "v1_16" and backbone == "vit-b":
            model = dino_base(image_size=image_size, intermediate_features=intermediate_features)
            
        elif version == "v2" and backbone == "vit-s":
            model = dinov2_small(image_size=image_size, intermediate_features=intermediate_features)
        elif version == "v2" and backbone == "vit-b":
            model = dinov2_base(image_size=image_size, intermediate_features=intermediate_features)
            
        elif version == "reg" and backbone == "vit-s":
            model = dino_reg_small(image_size=image_size, intermediate_features=intermediate_features)
        elif version == "reg" and backbone == "vit-b":
            model = dino_reg_base(image_size=image_size, intermediate_features=intermediate_features)
        else:
            raise NotImplementedError()

        if backbone == "vit-s":
            latent_size = 384
        elif backbone == "vit-b":
            latent_size = 768

        return model, latent_size