File size: 8,635 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

import torch.nn as nn
import torch.nn.functional as F


class Interpolate(nn.Module):  # TODO: Not sure about normalization generally (norm_cfg in original code)
    def __init__(self, scale_factor, mode, align_corners=False):
        super().__init__()
        self.interp = nn.functional.interpolate
        self.scale_factor = scale_factor
        self.mode = mode
        self.align_corners = align_corners

    def forward(self, x):
        x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)
        return x


class ReassembleBlocks(nn.Module):
    """ViTPostProcessBlock, process cls_token in ViT backbone output and
    rearrange the feature vector to feature map.
    Args:
        in_channels (int): ViT feature channels. Default: 768.
        out_channels (List): output channels of each stage.
            Default: [96, 192, 384, 768].
        readout_type (str): Type of readout operation. Default: 'ignore'.
        patch_size (int): The patch size. Default: 16.
    """
    def __init__(
        self, in_channels=768, out_channels=None, readout_type="ignore", patch_size=16
    ):
        super().__init__()

        if out_channels is None:
            out_channels = [96, 192, 384, 384]

        assert readout_type in ["ignore"]  # ["ignore", "add", "project"]
        self.readout_type = readout_type
        self.patch_size = patch_size

        self.projects = nn.ModuleList(
            [
                nn.Conv2d(in_channels, out_channel, kernel_size=1) for out_channel in out_channels
            ]
        )

        self.resize_layers = nn.ModuleList(
            [
                nn.ConvTranspose2d(
                    in_channels=out_channels[0], out_channels=out_channels[0], kernel_size=4, stride=4, padding=0
                ),
                nn.ConvTranspose2d(
                    in_channels=out_channels[1], out_channels=out_channels[1], kernel_size=2, stride=2, padding=0
                ),
                nn.Identity(),
                nn.Conv2d(
                    in_channels=out_channels[3], out_channels=out_channels[3], kernel_size=3, stride=2, padding=1
                )
            ]
        )

    def forward(self, inputs):
        out = []
        for i, x in enumerate(inputs):
            x = self.projects[i](x)
            x = self.resize_layers[i](x)
            out.append(x)
        return out


class PreActResidualConvUnit(nn.Module):
    """ResidualConvUnit, pre-activate residual unit.
    Args:
        in_channels (int): number of channels in the input feature map.
        stride (int): stride of the first block. Default: 1
        dilation (int): dilation rate for convs layers. Default: 1.
    """
    def __init__(self, in_channels, stride=1, dilation=1, bn=False):
        super().__init__()

        self.bn = bn
        self.act = nn.ReLU()
        self.conv1 = nn.Conv2d(
            in_channels,
            in_channels,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=not self.bn,
        )
        self.conv2 = nn.Conv2d(
            in_channels,
            in_channels,
            3,
            padding=1,
            bias=not self.bn,
        )
        if self.bn:
            self.bn1 = nn.BatchNorm2d(in_channels)
            self.bn2 = nn.BatchNorm2d(in_channels)

    def forward(self, inputs):
        inputs_ = inputs.clone()
        x = self.act(inputs)
        x = self.conv1(x)
        if self.bn:
            x = self.bn1(x)
        
        x = self.act(x)
        x = self.conv2(x)
        if self.bn:
            x = self.bn2(x)
        
        return x + inputs_


class FeatureFusionBlock(nn.Module):
    """FeatureFusionBlock, merge feature map from different stages.
    Args:
        in_channels (int): Input channels.
        expand (bool): Whether expand the channels in post process block.
            Default: False.
        align_corners (bool): align_corner setting for bilinear upsample.
            Default: True.
    """
    def __init__(self, in_channels, expand=False, align_corners=True):
        super().__init__()

        self.in_channels = in_channels
        self.expand = expand
        self.align_corners = align_corners

        self.out_channels = in_channels
        if self.expand:
            self.out_channels = in_channels // 2

        self.project = nn.Conv2d(self.in_channels, self.out_channels, kernel_size=1)

        self.res_conv_unit1 = PreActResidualConvUnit(in_channels=self.in_channels)
        self.res_conv_unit2 = PreActResidualConvUnit(in_channels=self.in_channels)

    def forward(self, *inputs):
        x = inputs[0]
        if len(inputs) == 2:
            if x.shape != inputs[1].shape:
                res = F.interpolate(inputs[1], size=(x.shape[2], x.shape[3]), mode="bilinear", align_corners=False)
            else:
                res = inputs[1]
            x = x + self.res_conv_unit1(res)
        x = self.res_conv_unit2(x)
        x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=self.align_corners)
        x = self.project(x)
        return x


class OutputHead(nn.Module):
    def __init__(self, latent_size=768):
        super().__init__()
        # TODO: Not sure about structure
        self.head_modules = nn.ModuleList(
            [
                nn.Conv2d(in_channels=latent_size, out_channels=latent_size, kernel_size=3, stride=1, padding=1),
                nn.ConvTranspose2d(in_channels=latent_size, out_channels=latent_size, kernel_size=2, stride=2, padding=0),
                nn.Conv2d(in_channels=latent_size, out_channels=latent_size, kernel_size=3, stride=1, padding=1),
            ]
        )

    def forward(self, x):
        for module in self.head_modules:
            x = module(x)
        return x


class DPTHead(nn.Module):
    """Vision Transformers for Dense Prediction.
    This head is implemented of `DPT <https://arxiv.org/abs/2103.13413>`_.
    Args:
        embed_dims (int): The embed dimension of the ViT backbone.
            Default: 768.
        post_process_channels (List): Out channels of post process conv
            layers. Default: [96, 192, 384, 768].
        readout_type (str): Type of readout operation. Default: 'ignore'.
        patch_size (int): The patch size. Default: 16.
        expand_channels (bool): Whether expand the channels in post process
            block. Default: False.
    """
    def __init__(
        self,
        embed_dims=768,
        post_process_channels=None,
        readout_type="ignore",
        patch_size=16,
        d_out=384,
        expand_channels=False,
    ):
        super().__init__()

        if not post_process_channels:
            self.post_process_channels = [96, 192, 384, 768]
        self.post_process_channels = [min(d_out, channel) for channel in post_process_channels]

        self.d_out = d_out
        self.expand_channels = expand_channels
        self.reassemble_blocks = ReassembleBlocks(embed_dims, self.post_process_channels, readout_type, patch_size)
        self.convs = nn.ModuleList()
        for channel in self.post_process_channels:
            self.convs.append(nn.Conv2d(channel, self.d_out, kernel_size=3, padding=1, bias=False))
        self.fusion_blocks = nn.ModuleList()
        for _ in range(len(self.convs)):
            self.fusion_blocks.append(FeatureFusionBlock(self.d_out))
        self.fusion_blocks[0].res_conv_unit1 = None
        self.project = nn.Conv2d(self.d_out, self.d_out, kernel_size=3, padding=1)
        self.output_head = OutputHead(d_out)

        self.num_fusion_blocks = len(self.fusion_blocks)
        self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers)
        self.num_post_process_channels = len(self.post_process_channels)
        assert self.num_fusion_blocks == self.num_reassemble_blocks
        assert self.num_reassemble_blocks == self.num_post_process_channels

    def forward(self, inputs):
        assert len(inputs) == self.num_reassemble_blocks
        x = [inp for inp in inputs]
        x = self.reassemble_blocks(x)
        x = [self.convs[i](feature) for i, feature in enumerate(x)]
        out = self.fusion_blocks[0](x[-1])
        for i in range(1, len(self.fusion_blocks)):
            out = self.fusion_blocks[i](out, x[-(i + 1)])
        out = self.project(out)
        out = self.output_head(out)
        return [out]  # list for BTS