File size: 13,292 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
"""
Implements image encoders
"""

from collections import OrderedDict

from torch import profiler

from scenedino.models.prediction_heads.layers import *

import numpy as np
import torch
import torch.nn as nn

import torchvision.models as models
import torch.utils.model_zoo as model_zoo


# Code taken from https://github.com/nianticlabs/monodepth2
#
# Godard, Clément, et al.
# "Digging into self-supervised monocular depth estimation."
# Proceedings of the IEEE/CVF international conference on computer vision.
# 2019.


class ResNetMultiImageInput(models.ResNet):
    """Constructs a resnet model with varying number of input images.
    Adapted from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
    """

    def __init__(self, block, layers, num_classes=1000, num_input_images=1):
        super(ResNetMultiImageInput, self).__init__(block, layers)
        self.inplanes = 64
        self.conv1 = nn.Conv2d(
            num_input_images * 3, 64, kernel_size=7, stride=2, padding=3, bias=False
        )
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)


def resnet_multiimage_input(num_layers, pretrained=False, num_input_images=1):
    """Constructs a ResNet model.
    Args:
        num_layers (int): Number of resnet layers. Must be 18 or 50
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        num_input_images (int): Number of frames stacked as input
    """
    assert num_layers in [18, 50], "Can only run with 18 or 50 layer resnet"
    blocks = {18: [2, 2, 2, 2], 50: [3, 4, 6, 3]}[num_layers]
    block_type = {18: models.resnet.BasicBlock, 50: models.resnet.Bottleneck}[
        num_layers
    ]
    model = ResNetMultiImageInput(block_type, blocks, num_input_images=num_input_images)

    if pretrained:
        loaded = model_zoo.load_url(
            models.resnet.model_urls["resnet{}".format(num_layers)]
        )
        loaded["conv1.weight"] = (
            torch.cat([loaded["conv1.weight"]] * num_input_images, 1) / num_input_images
        )
        model.load_state_dict(loaded)
    return model


class ResnetEncoder(nn.Module):
    """Pytorch module for a resnet encoder"""

    def __init__(self, num_layers, pretrained, num_input_images=1):
        super(ResnetEncoder, self).__init__()

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])

        resnets = {
            18: models.resnet18,
            34: models.resnet34,
            50: models.resnet50,
            101: models.resnet101,
            152: models.resnet152,
        }

        weights = {
            18: models.resnet.ResNet18_Weights.IMAGENET1K_V1,
            34: models.resnet.ResNet34_Weights.IMAGENET1K_V1,
            50: models.resnet.ResNet50_Weights.IMAGENET1K_V1,
            101: models.resnet.ResNet101_Weights.IMAGENET1K_V1,
            152: models.resnet.ResNet152_Weights.IMAGENET1K_V1,
        }

        if num_layers not in resnets:
            raise ValueError(
                "{} is not a valid number of resnet layers".format(num_layers)
            )

        if num_input_images > 1:
            self.encoder = resnet_multiimage_input(
                num_layers, pretrained, num_input_images
            )
        else:
            # TODO: currently hardcoded make adaptable

            self.encoder = resnets[num_layers](
                weights=weights[num_layers]
            )

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4

    def forward(self, input_image):
        self.features = []
        x = (input_image - 0.45) / 0.225
        x = self.encoder.conv1(x)
        x = self.encoder.bn1(x)
        self.features.append(self.encoder.relu(x))
        self.features.append(
            self.encoder.layer1(self.encoder.maxpool(self.features[-1]))
        )
        self.features.append(self.encoder.layer2(self.features[-1]))
        self.features.append(self.encoder.layer3(self.features[-1]))
        self.features.append(self.encoder.layer4(self.features[-1]))

        return self.features


class DepthDecoder(nn.Module):
    def __init__(
        self, num_ch_enc, scales=range(4), num_output_channels=1, use_skips=True
    ):
        super(DepthDecoder, self).__init__()

        self.num_output_channels = num_output_channels
        self.use_skips = use_skips
        self.upsample_mode = "nearest"
        self.scales = scales

        self.num_ch_enc = num_ch_enc
        self.num_ch_dec = np.array([16, 32, 64, 128, 256])

        # decoder
        self.convs = OrderedDict()
        for i in range(4, -1, -1):
            # upconv_0
            num_ch_in = self.num_ch_enc[-1] if i == 4 else self.num_ch_dec[i + 1]
            num_ch_out = self.num_ch_dec[i]
            self.convs[("upconv", i, 0)] = ConvBlock(num_ch_in, num_ch_out)

            # upconv_1
            num_ch_in = self.num_ch_dec[i]
            if self.use_skips and i > 0:
                num_ch_in += self.num_ch_enc[i - 1]
            num_ch_out = self.num_ch_dec[i]
            self.convs[("upconv", i, 1)] = ConvBlock(num_ch_in, num_ch_out)

        for s in self.scales:
            self.convs[("dispconv", s)] = Conv3x3(
                self.num_ch_dec[s], self.num_output_channels
            )

        self.decoder_keys = {k: i for i, k in enumerate(self.convs.keys())}
        self.decoder = nn.ModuleList(list(self.convs.values()))
        self.sigmoid = nn.Sigmoid()

    def forward(self, input_features):
        self.outputs = {}

        # decoder
        x = input_features[-1]
        for i in range(4, -1, -1):
            # x = self.convs[("upconv", i, 0)](x)
            x = self.decoder[self.decoder_keys[("upconv", i, 0)]](x)
            x = [upsample(x)]
            if self.use_skips and i > 0:
                if x[0].shape[2] > input_features[i - 1].shape[2]:
                    x[0] = x[0][:, :, : input_features[i - 1].shape[2], :]
                if x[0].shape[3] > input_features[i - 1].shape[3]:
                    x[0] = x[0][:, :, :, : input_features[i - 1].shape[3]]
                x += [input_features[i - 1]]
            x = torch.cat(x, 1)
            # x = self.convs[("upconv", i, 1)](x)
            x = self.decoder[self.decoder_keys[("upconv", i, 1)]](x)

            self.outputs[("features", i)] = x

            if i in self.scales:
                # self.outputs[("disp", i)] = self.sigmoid(self.convs[("dispconv", i)](x))
                self.outputs[("disp", i)] = self.sigmoid(
                    self.decoder[self.decoder_keys[("dispconv", i)]](x)
                )

        return self.outputs


class Decoder(nn.Module):
    def __init__(
        self, num_ch_enc, num_ch_dec=None, d_out=1, scales=range(4), use_skips=True, extra_outs=0
    ):
        super(Decoder, self).__init__()

        self.use_skips = use_skips
        self.upsample_mode = "nearest"

        self.num_ch_enc = num_ch_enc
        if num_ch_dec is None:
            self.num_ch_dec = np.array([128, 128, 256, 256, 512])
        else:
            self.num_ch_dec = num_ch_dec
        self.d_out = d_out
        self.scales = scales
        self.extra_outs = extra_outs

        self.num_ch_dec = [max(self.d_out, chns) for chns in self.num_ch_dec]

        # decoder
        self.convs = OrderedDict()
        for i in range(4, -1, -1):
            # upconv_0
            num_ch_in = self.num_ch_enc[-1] if i == 4 else self.num_ch_dec[i + 1]
            num_ch_out = self.num_ch_dec[i]
            self.convs[("upconv", i, 0)] = ConvBlock(num_ch_in, num_ch_out)

            # upconv_1
            num_ch_in = self.num_ch_dec[i]
            if self.use_skips and i > 0:
                num_ch_in += self.num_ch_enc[i - 1]
            num_ch_out = self.num_ch_dec[i]
            self.convs[("upconv", i, 1)] = ConvBlock(num_ch_in, num_ch_out)

        for s in self.scales:
            self.convs[("dispconv", s)] = Conv3x3(self.num_ch_dec[s], self.d_out)

        if self.extra_outs > 0:
            for s in self.scales:
                self.convs[("extra_outs", s)] = Conv3x3(self.num_ch_dec[s], self.extra_outs)

            self.d_out += self.extra_outs

        self.decoder_keys = {k: i for i, k in enumerate(self.convs.keys())}
        self.decoder = nn.ModuleList(list(self.convs.values()))
        self.sigmoid = nn.Sigmoid()

    def forward(self, input_features):
        with profiler.record_function("encoder_forward"):
            self.outputs = {}

            # decoder
            x = input_features[-1]
            for i in range(4, -1, -1):
                x = self.decoder[self.decoder_keys[("upconv", i, 0)]](x)

                x = [F.interpolate(x, scale_factor=(2, 2), mode="nearest")]

                if self.use_skips and i > 0:
                    feats = input_features[i - 1]

                    if x[0].shape[2] > feats.shape[2]:
                        x[0] = x[0][:, :, : feats.shape[2], :]
                    if x[0].shape[3] > feats.shape[3]:
                        x[0] = x[0][:, :, :, : feats.shape[3]]
                    x += [feats]
                x = torch.cat(x, 1)

                x = self.decoder[self.decoder_keys[("upconv", i, 1)]](x)

                self.outputs[("features", i)] = x

                if i in self.scales:
                    self.outputs[("disp", i)] = self.decoder[
                        self.decoder_keys[("dispconv", i)]
                    ](x)

                    if self.extra_outs > 0:
                        self.outputs[("extra_outs", i)] = self.decoder[
                            self.decoder_keys[("extra_outs", i)]
                        ](x)

        return self.outputs


class Monodepth2(nn.Module):
    """
    2D (Spatial/Pixel-aligned/local) image encoder
    """

    def __init__(
        self,
        resnet_layers=18,
        cp_location=None,
        freeze=False,
        num_ch_dec=None,
        d_out=128,
        scales=range(4),
        pointwise_convs=None,
        extra_outs=0
    ):
        super().__init__()

        self.encoder = ResnetEncoder(resnet_layers, True, 1)
        self.num_ch_enc = self.encoder.num_ch_enc

        self.upsample_mode = "nearest"
        self.d_out = d_out
        self.extra_outs = extra_outs
        self.scales = scales

        if pointwise_convs is None:
            decoder_out = self.d_out
        else:
            decoder_out = pointwise_convs[0]

        # decoder
        self.decoder = Decoder(
            num_ch_enc=self.num_ch_enc,
            d_out=decoder_out,
            num_ch_dec=num_ch_dec,
            scales=self.scales,
            extra_outs=extra_outs,
        )
        self.num_ch_dec = self.decoder.num_ch_dec

        # pointwise_convs
        if pointwise_convs is None:
            self.pointwise_convs = None
        else:
            pointwise_convs.append(self.d_out)
            self.pointwise_convs = nn.Sequential(
                *[nn.Sequential(
                    nn.ReLU(),
                    nn.Conv2d(pointwise_convs[i], pointwise_convs[i+1], 1, 1, 0),
                ) for i in range(len(pointwise_convs)-1)]
            )

        self.latent_size = self.d_out

        if cp_location is not None:
            cp = torch.load(cp_location)
            self.load_state_dict(cp["model"])

        if freeze:
            for p in self.parameters(True):
                p.requires_grad = False

    def forward(self, x):
        """
        For extracting ResNet's features.
        :param x image (B, C, H, W)
        :return latent (B, latent_size, H, W)
        """
        with profiler.record_function("encoder_forward"):
            x = torch.cat([x * 0.5 + 0.5], dim=1)
            image_features = self.encoder(x)  ## output encoder from Monodepth2
            outputs = self.decoder(image_features)

            x = [outputs[("disp", i)] for i in self.scales]

            if self.decoder.extra_outs > 0:
                x = [torch.cat((x[i], outputs[("extra_outs", i)]), dim=1) for i in self.scales]

            if self.pointwise_convs is not None:
                x = [
                    self.pointwise_convs(x_) for x_ in x
                ]

        return x  ## default: x ## note: we need img_feat for feeding into NeuRay

    @classmethod
    def from_conf(cls, conf):
        return cls(
            cp_location=conf.get("cp_location", None),
            freeze=conf.get("freeze", False),
            num_ch_dec=conf.get("num_ch_dec", None),
            d_out=conf.get("d_out", 128),
            resnet_layers=conf.get("resnet_layers", 18),
            pointwise_convs=conf.get("pointwise_convs", None),
            extra_outs=conf.get("extra_outs", 0),
        )