Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,517 Bytes
9e15541 cfb4ec2 9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
import torch
import torch.nn as nn
import torch.autograd.profiler as profiler
import torch.nn.functional as F
from torch.cuda.amp import autocast
from torchvision import transforms
from scenedino.common.cameras.pinhole import (
outside_frustum,
project_to_image,
pts_into_camera,
)
from scenedino.common.cameras.pinhole import EPS
from scenedino.common.positional_encoding import encoding_mode
from scenedino.models.base_model import BaseModel
# torch.inverse(torch.ones((1, 1), device="cuda:0"))
class BTSNet(BaseModel):
def __init__(
self,
conf,
encoder: nn.Module,
code_xyz,
heads: dict[str, nn.Module],
final_pred_head: str | None = None,
uncertainty_predictor: nn.Module | None = None,
ren_nc=None,
downstream_head: nn.Module | None = None
):
super().__init__()
self.encoder = encoder
self.code_xyz = code_xyz
self.heads = nn.ModuleDict(heads)
self.uncertainty_predictor = uncertainty_predictor
self.extra_outs = self.encoder.extra_outs
if final_pred_head:
self.final_pred_head = final_pred_head
else:
self.final_pred_head = list(self.heads.keys())[0]
self.requires_bottleneck_feats = False
# for _, head in self.heads.items():
# if hasattr(head, "require_bottleneck_feats"):
# if head.require_bottleneck_feats and (
# head.independent_token_net.__class__.__name__
# == "NeuRayIndependentToken"
# ): ## For read out token type: "NeuRayIndependentToken"
# self.requires_bottleneck_feats = True
# break
self.use_viewdirs = conf.get("use_viewdirs", False)
# TODO: figure out how to pass z_near and z_far to the model, probably outside with the positional encoding
self.d_min, self.d_max = conf.get("z_near", 3), conf.get("z_far", 80)
self.learn_empty, self.empty_empty, self.inv_z = (
conf.get("learn_empty", True),
conf.get("empty_empty", False),
conf.get("inv_z", True),
)
self.color_interpolation = conf.get("color_interpolation", "bilinear")
# TODO: rethink encoding mode
self.encoding_mode = encoding_mode(
conf.get("code_mode", "z"), self.d_min, self.d_max, self.inv_z, EPS
)
self.flip_augmentation = conf.get("flip_augmentation", False)
self.return_sample_depth = conf.get("return_sample_depth", False)
self.sample_color = conf.get("sample_color", True)
self.predict_dino = conf.get("predict_dino", False)
# TODO: manage _d_out in another way
d_in = self.encoder.latent_size + self.code_xyz.d_out ### 64 + 39
if self.sample_color and self.predict_dino:
dino_dims = conf.get("dino_dims", 16)
d_out = 1 + dino_dims
elif self.sample_color:
d_out = 1
else:
d_out = 4
self._d_in, self._d_out = d_in, d_out
if self.learn_empty:
self.empty_feature = nn.Parameter(
torch.randn((self.encoder.latent_size,), requires_grad=True)
)
self._scale = 0 ## set spatial resolution size accoridng to the scale of output feature map from the encoder
self.downstream_head = downstream_head
if downstream_head is not None:
self.gt_classes = downstream_head.gt_classes
else:
self.gt_classes = None
def set_scale(self, scale):
self._scale = scale
def get_scale(self):
return self._scale
def compute_grid_transforms(self, *args, **kwargs):
pass
def encode(
self,
images,
Ks,
poses_c2w,
ids_encoder=None,
ids_render=None,
ids_loss=None,
images_alt=None,
combine_ids=None,
color_frame_filter=None,
loss_feature_grid_shift=None,
):
with autocast(enabled=False):
poses_w2c = torch.inverse(poses_c2w.float())
if ids_encoder is None:
images_encoder = images
Ks_encoder = Ks
poses_w2c_encoder = poses_w2c
ids_encoder = list(range(len(images)))
else:
images_encoder = images[:, ids_encoder]
Ks_encoder = Ks[:, ids_encoder]
poses_w2c_encoder = poses_w2c[:, ids_encoder]
if ids_loss is None:
images_loss = images
ids_loss = list(range(len(images)))
else:
images_loss = images[:, ids_loss]
# TODO: Why?
if images_alt is not None:
images = images_alt
else:
images = images * 0.5 + 0.5
if ids_render is None:
images_render = images
Ks_render = Ks
poses_w2c_render = poses_w2c
ids_render = list(range(len(images)))
else:
images_render = images[:, ids_render]
Ks_render = Ks[:, ids_render]
poses_w2c_render = poses_w2c[:, ids_render]
if combine_ids is not None:
combine_ids = list(list(group) for group in combine_ids)
get_combined = set(sum(combine_ids, []))
for i in range(images.shape[1]):
if i not in get_combined:
combine_ids.append((i,))
remap_encoder = {v: i for i, v in enumerate(ids_encoder)}
remap_render = {v: i for i, v in enumerate(ids_render)}
comb_encoder = [
[remap_encoder[i] for i in group if i in ids_encoder]
for group in combine_ids
]
comb_render = [
[remap_render[i] for i in group if i in ids_render]
for group in combine_ids
]
comb_encoder = [group for group in comb_encoder if len(group) > 0]
comb_render = [group for group in comb_render if len(group) > 0]
else:
comb_encoder = None
comb_render = None
## Note: This is yet to be feature map before passing img to encoder
n_, nv_, c_, h_, w_ = images_encoder.shape ### [n_, nv_, 3:=RGB, 192, 640]
n_loss_, nv_loss_, _, _, _ = images_loss.shape
if self.flip_augmentation and self.training: ## data augmentation for color
do_flip = (torch.rand(1) > 0.5).item()
else:
do_flip = False
if do_flip:
images_encoder = torch.flip(images_encoder, dims=(-1,))
# images_loss = torch.flip(images_loss, dims=(-1,))
image_latents_ms = self.encoder(images_encoder.view(n_ * nv_, c_, h_, w_))
# TODO: figure out patch shift
if loss_feature_grid_shift is not None and loss_feature_grid_shift != (0, 0):
i_shift = 8 + loss_feature_grid_shift[0]
j_shift = 8 + loss_feature_grid_shift[1]
n, v, _, _, _ = images_loss.shape
images_loss = images_loss.flatten(0, 1)
images_loss = transforms.Pad(8, padding_mode="edge")(images_loss)
images_loss = transforms.functional.crop(images_loss, i_shift, j_shift, h_, w_)
images_loss = images_loss.unflatten(0, (n, v))
image_loss_latents_ms = self.encoder(images_loss.view(n_loss_ * nv_loss_, c_, h_, w_),
ground_truth=True)
if do_flip:
image_latents_ms = [torch.flip(il, dims=(-1,)) for il in image_latents_ms]
# image_loss_latents_ms = [torch.flip(il, dims=(-1,)) for il in image_loss_latents_ms]
_, _, h_, w_ = image_latents_ms[
0
].shape ## get spatial resol from 1st layer out of 4 from feature maps generated by Enc
image_latents_ms = [
F.interpolate(image_latents, size=(h_, w_)).view(
n_, nv_, -1, h_, w_
)
for image_latents in image_latents_ms
] ## upsampling the feature maps from down-sampled 4 layers to the same spatial resolution of 1st layer
# img_feat_ms = [F.interpolate(feat_latents, size=(h_, w_)).view(n_, nv_, img_feat_ms[-1].shape[1], h_, w_) for feat_latents in img_feat_ms] ## upsampling the feature maps from down-sampled 4 layers to the same spatial resolution of 1st layer
_, _, h_, w_ = image_loss_latents_ms[
0
].shape ## get spatial resol from 1st layer out of 4 from feature maps generated by Enc
image_loss_latents_ms = [
image_loss_latents.view(
n_loss_, nv_loss_, -1, h_, w_
)
for image_loss_latents in image_loss_latents_ms
]
if self.extra_outs > 0:
self.grid_f_extra = [
il_ms[:, :, -self.extra_outs:, :, :] for il_ms in image_latents_ms
]
image_latents_ms = [
il_ms[:, :, :-self.extra_outs, :, :] for il_ms in image_latents_ms
]
else:
self.grid_f_extra = None
## feature
self.grid_f_features = image_latents_ms
self.grid_f_Ks = Ks_encoder
self.grid_f_poses_w2c = poses_w2c_encoder
self.grid_f_combine = comb_encoder
## color
self.grid_c_imgs = images_render.detach()
self.grid_c_Ks = Ks_render
self.grid_c_poses_w2c = poses_w2c_render
self.grid_c_combine = comb_render
self.grid_l_loss_features = image_loss_latents_ms
self.color_frame_filter = color_frame_filter
def pad_zeros(self, x, padding):
shape = list(x.shape)
shape[-2] += 2 * padding
shape[-1] += 2 * padding
padded_x = torch.zeros(shape, dtype=x.dtype, device=x.device)
padded_x[..., padding:-padding, padding:-padding] = x
return padded_x
def sample_features(
self,
xyz,
# use_single_featuremap=True
):
## Get the shape of the input point cloud and the feature grid (n, pts, spatial_coordinate == 3)
B, n_pts, _ = xyz.shape
B, n_views, c_, h_, w_ = self.grid_f_features[
self._scale
].shape # [B, n_views, C, H, W]
with autocast(enabled=False):
xyz_projected = pts_into_camera(
xyz, self.grid_f_poses_w2c
) # [B, n_views, n_pts, 3]
distance = torch.norm(xyz_projected, dim=-2, keepdim=True)
xy, z = project_to_image(xyz_projected, self.grid_f_Ks)
invalid = outside_frustum(xy, z)
# For numerical stability with AMP. Should not affect training outcome
xy = xy.clamp(-2, 2)
"""given a vector p = (x, y, z) this is the difference of normalizing either:z ||p|| = sqrt(x^2 + y^2 + z^2). So you either give the network (x, y, z_normalized) or (x, y, ||p||_normalized) as input. It is just different parameterizations of the same point."""
xyz_code = self.code_xyz(
self.encoding_mode(xy, z, distance).view(B * n_views * n_pts, -1)
).view(B, n_views, n_pts, -1)
# These samples are from different scales
sampled_features = (
F.grid_sample(
self.grid_f_features[self._scale].view(B * n_views, c_, h_, w_),
xy.view(B * n_views, 1, -1, 2),
mode="bilinear",
padding_mode="border",
align_corners=False,
)
.view(B, n_views, c_, n_pts)
.permute(0, 1, 3, 2)
) ## set x,y coordinates as grid feature
if self.learn_empty:
## "empty space" can refer to areas in a scene where there is no object, or it could also refer to areas that are not observed or are beyond the range of the sensor. This allows the model to have a distinct learned representation for "empty" space, which can be beneficial in tasks like 3D reconstruction where understanding both the objects in a scene and the empty space between them is important.
## Replace invalid features in the sampled features tensor with the corresponding features from the expanded empty feature
empty_feature_expanded = self.empty_feature.view(1, 1, 1, c_).expand(
B, n_views, n_pts, c_
) ## trainable parameter, initialized with random features
sampled_features[invalid.expand(-1, -1, -1, c_)] = empty_feature_expanded[
invalid.expand(-1, -1, -1, c_)
] ## broadcasting and make it fit to feature map
sampled_features = torch.cat(
(sampled_features, xyz_code), dim=-1
) # [B, n_views, n_pts, C+C_pos_emb]
return (
sampled_features.permute(0, 2, 1, 3),
invalid[..., 0].permute(0, 2, 1),
)
def sample_colors(self, xyz, **kwargs):
n_, n_pts, _ = xyz.shape ## n := batch size, n_pts := #_points in world coord.
n_, nv_, c_, h_, w_ = self.grid_c_imgs.shape ## nv_ := #_views
ray_info = kwargs.get("ray_info", None)
render_flow = kwargs.get("render_flow", False)
xyz_projected = pts_into_camera(
xyz, self.grid_c_poses_w2c
) # [B, n_views, n_pts, 3]
distance = torch.norm(xyz_projected, dim=-2, keepdim=True)
xy, z = project_to_image(xyz_projected, self.grid_c_Ks)
# For numerical stability with AMP. Should not affect training outcome.
xy = xy.clamp(-2, 2)
invalid = outside_frustum(xy, z)
sampled_colors = (
F.grid_sample(
self.grid_c_imgs.view(n_ * nv_, c_, h_, w_),
xy.view(n_ * nv_, 1, -1, 2),
mode=self.color_interpolation,
padding_mode="border",
align_corners=False,
)
.view(n_, nv_, c_, n_pts)
.permute(0, 1, 3, 2)
) ## Sample colors from the grid using the projected world coordinates.
assert not torch.any(
torch.isnan(sampled_colors)
) ## Check that there are no NaN values in the sampled colors tensor.
if (
self.grid_c_combine is not None
): ## If self.grid_c_combine is not None, combine colors from multiple points in the same group.
invalid_groups, sampled_colors_groups = [], []
for (
group
) in (
self.grid_c_combine
): ## group:=list of indices that correspond to a subset of the total set of points in the point cloud. These subsets are combined to create a single image of the entire point cloud from multiple views.
if (
len(group) == 1
): ## If the group contains only one point, append the corresponding invalid tensor and sampled colors tensor to the respective lists.
invalid_groups.append(invalid[:, group])
sampled_colors_groups.append(sampled_colors[:, group])
continue
invalid_to_combine = invalid[
:, group
] ## Otherwise, combine colors from the group by picking the color of the first valid point in the group.
colors_to_combine = sampled_colors[:, group]
indices = torch.min(invalid_to_combine, dim=1, keepdim=True)[
1
] ## Get the index of the first valid point in the group.
invalid_picked = torch.gather(
invalid_to_combine, dim=1, index=indices
) ## Pick the invalid tensor and sampled colors tensor corresponding to the first valid point in the group.
colors_picked = torch.gather(
colors_to_combine,
dim=1,
index=indices.expand(-1, -1, -1, colors_to_combine.shape[-1]),
)
invalid_groups.append(
invalid_picked
) ## Append the picked invalid tensor and sampled colors tensor to the respective lists.
sampled_colors_groups.append(colors_picked)
invalid = torch.cat(
invalid_groups, dim=1
) ## Concatenate the invalid tensors and sampled colors tensors along the second dimension.
sampled_colors = torch.cat(sampled_colors_groups, dim=1)
if (self.color_frame_filter is not None) and (ray_info is not None):
source_frame = ray_info[..., 0].to(torch.int64)
# colors are in shape (n, nv, n_pts, c)
# we aim to collaps nv
frame_mask = self.color_frame_filter[source_frame, :]
frame_mask = frame_mask.permute(0, 2, 1).unsqueeze(-1).expand(-1, -1, -1, sampled_colors.shape[-1])
sampled_colors = torch.gather(sampled_colors, dim=1, index=frame_mask)
invalid = torch.gather(invalid, dim=1, index=frame_mask[..., :1])
nv_ = sampled_colors.shape[1]
else:
frame_mask = None
if render_flow and ray_info.shape[-1] > 1:
xy_origin = ray_info[..., 1:3].unsqueeze(1)
if frame_mask is not None:
xy = torch.gather(xy, dim=1, index=frame_mask[..., :2])
flow = xy - xy_origin
if sampled_colors.shape[-1] >= 5:
sampled_colors[..., 3:5] = flow
else:
sampled_colors = torch.cat((sampled_colors, flow), dim=-1)
return (
sampled_colors,
invalid,
) ## Return the sampled colors tensor and the invalid tensor.
def sample_extras(self, xyz, **kwargs):
if self.grid_f_extra is None:
return None
B, n_pts, _ = xyz.shape
B, n_views, c_, h_, w_ = self.grid_f_extra[
self._scale
].shape # [B, n_views, C, H, W]
xyz_projected = pts_into_camera(
xyz, self.grid_f_poses_w2c
) # [B, n_views, n_pts, 3]
distance = torch.norm(xyz_projected, dim=-2, keepdim=True)
xy, z = project_to_image(xyz_projected, self.grid_f_Ks)
invalid = outside_frustum(xy, z)
# For numerical stability with AMP. Should not affect training outcome
xy = xy.clamp(-2, 2)
sampled_extras = (
F.grid_sample(
self.grid_f_extra[self._scale].view(B * n_views, c_, h_, w_),
xy.view(B * n_views, 1, -1, 2),
mode="bilinear",
padding_mode="border",
align_corners=False,
)
.view(B, n_views, c_, n_pts)
.permute(0, 1, 3, 2)
) ## set x,y coordinates as grid feature
return sampled_extras.permute(0, 2, 1, 3)
def forward(self, xyz: torch.Tensor, **kwargs):
# context manager that helps to measure the execution time of the code block inside it. i.e. used to profile the execution time of the forward pass of the model during inference for performance analysis and optimization purposes. ## to analyze the performance of the code block, helping developers identify bottlenecks and optimize their code.
with profiler.record_function(
"model_inference"
): ## create object with the name "model_inference". ## stop the timer when exiting the block
only_density = kwargs.get("only_density", False)
ray_info = kwargs.get("ray_info", None)
render_flow = kwargs.get("render_flow", False)
predict_segmentation = kwargs.get("predict_segmentation", False)
prediction_mode = kwargs.get("prediction_mode", "stego_kmeans")
n_, n_pts, _ = xyz.shape ## n_ := Batch_size, n_pts == M
nv_ = self.grid_c_imgs.shape[1] ## 4 == (stereo 2 + side fish eye cam 2)
if self.grid_c_combine is not None:
nv_ = len(self.grid_c_combine)
(
sampled_features,
invalid_features,
) = self.sample_features(
xyz,
# use_single_featuremap=False,
)
extras = self.sample_extras(xyz)
mlp_input = sampled_features.flatten(0, 1) # (B * n_pts, n_views, C)
# Camera frustum culling stuff, currently disabled
combine_index, dim_size = None, None
kwargs = {
"invalid_features": invalid_features.flatten(
0, 1
), # (B* n_pts, n_views)
"combine_inner_dims": (n_pts,),
"combine_index": combine_index,
"dim_size": dim_size,
}
head_outputs = {
name: head(mlp_input, **{**kwargs, "head_name": name}).reshape(
n_, -1, head.d_out
)
for name, head in self.heads.items()
}
if "normal_head" in head_outputs and "dino_head" in head_outputs:
mlp_output = torch.cat([head_outputs["normal_head"], head_outputs["dino_head"]], dim=-1)
else:
mlp_output = head_outputs[self.final_pred_head]
if predict_segmentation:
sigma = mlp_output[..., :1]
sigma = F.softplus(sigma)
nv_ = 1
dino = mlp_output[..., 1:] # tanh?
invalid = None
else:
if self.sample_color:
if self.predict_dino:
sigma = mlp_output[..., :1]
sigma = F.softplus(sigma)
rgb, invalid_colors = self.sample_colors(xyz, ray_info=ray_info, render_flow=render_flow) # (n, nv_, pts, 3)
nv_ = rgb.shape[1] # RGB shape can change due to color frame filtering.
dino = mlp_output[..., 1:] # tanh?
# dino = dino / torch.linalg.norm(dino, keepdim=True)
else:
sigma = mlp_output[..., :1]
sigma = F.softplus(sigma)
rgb, invalid_colors = self.sample_colors(xyz, ray_info=ray_info, render_flow=render_flow) # (n, nv_, pts, 3)
nv_ = rgb.shape[1] # RGB shape can change due to color frame filtering.
else: ## RGB colors and invalid colors are computed directly from the mlp_output tensor. i.e. w/o calling sample_colors(xyz)
sigma = mlp_output[..., :1]
sigma = F.relu(sigma)
rgb = mlp_output[..., 1:4].reshape(n_, 1, n_pts, 3)
rgb = F.sigmoid(rgb)
invalid_colors = invalid_features.unsqueeze(-2)
nv_ = 1
"""Combine RGB colors and invalid colors"""
if not only_density:
_, _, _, c_ = rgb.shape
rgb = rgb.permute(0, 2, 1, 3).reshape(
n_, n_pts, nv_ * c_
) # (n, pts, nv * 3)
invalid_colors = invalid_colors.permute(0, 2, 1, 3).reshape(
n_, n_pts, nv_
)
invalid = (
invalid_colors | torch.all(invalid_features, dim=-1)[..., None]
)
invalid = invalid.to(rgb.dtype)
else:
rgb = torch.zeros((n_, n_pts, nv_ * 3), device=sigma.device)
invalid = invalid_features.to(sigma.dtype)
if extras is not None:
extras = F.softplus(extras)
extras = extras.permute(0, 2, 1, 3).reshape(n_, n_pts, -1)
state_dict = {
"invalid_features": invalid_features.flatten(0, 1)[None],
# TODO: figure out state dict fusion, probably collate fn
"dino_features": dino,
}
if predict_segmentation:
dino_full = self.encoder.expand_dim(dino)
if self.downstream_head is not None:
seg = self.downstream_head(dino_full, mode=prediction_mode)
seg = F.one_hot(seg, self.gt_classes) # TODO: one hot
else:
# No downstream head linked!
seg = None
return dino_full, invalid, sigma, seg
else:
return rgb, invalid, sigma, extras, state_dict
|