File size: 17,195 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
from abc import abstractmethod

import torch
import torch.nn as nn
import torch.nn.functional as F


def make_independent_token(conf, attn_feat):
    token_type = conf.get("type", "FixedViewIndependentToken")
    if token_type == "FixedViewIndependentToken":
        return FixedViewIndependentToken(attn_feat)
    elif token_type == "DataViewIndependentToken":
        return DataViewIndependentToken(attn_feat)
    elif token_type == "NeuRayIndependentToken":
        return NeuRayIndependentToken(att_feat=attn_feat, **conf["args"])
    else:
        raise NotImplementedError("Unsupported Token type")


class BaseIndependentToken(nn.Module):
    def __init__(self, attn_feat: int) -> None:
        super().__init__()

        self.attn_feat = attn_feat
        self.require_bottleneck_feats = False

    @abstractmethod
    def forward(self, view_dependent_tokens: torch.Tensor, **kwargs) -> torch.Tensor:
        pass


class FixedViewIndependentToken(BaseIndependentToken):
    def __init__(self, attn_feat: int) -> None:
        super().__init__(attn_feat)
        self.require_bottleneck_feats = False

        self.readout_token = nn.Parameter(torch.rand(1, 1, attn_feat), requires_grad=True)

    def forward(self, view_dependent_tokens: torch.Tensor, **kwargs) -> torch.Tensor:
        return self.readout_token.expand(view_dependent_tokens.shape[0], -1, -1)  ### (n_pts, 1, 16)


def weights_init(m):
    if isinstance(m, nn.Linear):
        nn.init.kaiming_normal_(m.weight.data)
        if m.bias is not None:
            nn.init.zeros_(m.bias.data)


@torch.jit.script
def fused_mean_variance(x, weight):
    mean = torch.sum(x * weight, dim=-2, keepdim=True)
    var = torch.sum(weight * (x - mean) ** 2, dim=-2, keepdim=True)
    return mean, var


class DataViewIndependentToken(BaseIndependentToken):
    def __init__(self, attn_feat: int) -> None:
        super().__init__(attn_feat)
        self.require_bottleneck_feats = False

        self.eps = 1.0e-9
        self.layer = nn.Linear(2 * attn_feat, attn_feat, bias=True)

    # def forward(self, view_dependent_tokens: torch.Tensor, invalid_mask: torch.Tensor) -> torch.Tensor:
    def forward(self, view_dependent_tokens: torch.Tensor, **kwargs) -> torch.Tensor:
        mask = 1 - kwargs["invalid_features"].float()
        # mask = 1 - invalid_mask
        weights = mask / (torch.sum(mask, dim=-1, keepdim=True) + 1e-8)
        mean, var = fused_mean_variance(view_dependent_tokens, weights.unsqueeze(-1))
        # num_valid_tokens = torch.sum((1 - invalid_mask), dim=-1, keepdim=True) + self.eps
        # mean = torch.sum(view_dependent_tokens * (1 - invalid_mask).unsqueeze(-1), dim=-2) / num_valid_tokens
        # var = torch.sum((view_dependent_tokens - mean)**2 * (1 - invalid_mask).unsqueeze(-1), dim=-2) / num_valid_tokens
        return nn.ELU()(self.layer(torch.cat([mean, var], dim=-1)))


class NeuRayIndependentToken(BaseIndependentToken):
    def __init__(
        self,
        n_points_per_ray: int,
        # neuray_in_dim: int = 32,
        in_feat_ch: int = 32,
        n_samples: int = 64,
        att_feat: int = 16,
        d_model: int = 103,
        rbs: int = 2048,
        **kwargs
    ):
        super().__init__(att_feat)

        self.n_points_per_ray = n_points_per_ray
        self.require_bottleneck_feats = True
        # self.args = args
        self.anti_alias_pooling = False
        if self.anti_alias_pooling:
            self.s = nn.Parameter(torch.tensor(0.2), requires_grad=True)
        activation_func = nn.ELU(
            inplace=True
        )  ## (+): Mean Outputs Closer to Zero: want activations with mean outputs closer to zero.        ## nn.LeakyReLU: (+): faster convergence, When the distribution of the negative values in your dataset is meaningful and shouldn't be discarded.
        self.n_samples = n_samples
        self.ray_dir_fc = nn.Sequential(
            nn.Linear(4, 16),  ## defualt: 4
            activation_func,
            nn.Linear(16, in_feat_ch),  ## default: in_feat_ch + 3
            activation_func,
        )

        self.base_fc = nn.Sequential(
            nn.Linear((in_feat_ch) * 5 + att_feat, 64),  ## default: ((in_feat_ch+3)*5+neuray_in_dim, 64)
            activation_func,
            nn.Linear(64, 32),
            activation_func,
        )

        self.vis_fc = nn.Sequential(
            nn.Linear(32, 32),
            activation_func,
            nn.Linear(32, 33),
            activation_func,
        )

        self.vis_fc2 = nn.Sequential(nn.Linear(32, 32), activation_func, nn.Linear(32, 1), nn.Sigmoid())

        self.geometry_fc = nn.Sequential(
            nn.Linear(32 * 2 + 1, att_feat * 2),  ## default: (32*2+1, 64)
            activation_func,
            nn.Linear(att_feat * 2, att_feat),
            activation_func,
        )

        # self.ray_attention = MultiHeadAttention(nhead, att_feat, 4, 4)              ## default: (4, 16, 4, 4)
        self.out_geometry_fc = nn.Sequential(nn.Linear(16, 16), activation_func, nn.Linear(16, 1), nn.ReLU())

        self.rgb_fc = nn.Sequential(
            nn.Linear(32 + 1 + 4, 16), activation_func, nn.Linear(16, 8), activation_func, nn.Linear(8, 1)
        )

        self.neuray_fc = nn.Sequential(
            nn.Linear(
                att_feat,
                8,
            ),
            activation_func,
            nn.Linear(8, 1),
        )

        self.img_feat2low = nn.Sequential(
            nn.Linear(rbs, rbs // 4),  ## TODO: replace this hard coded with the flexible
            activation_func,
            # nn.Linear(rbs // 4, d_model),
            nn.Linear(rbs // 4, in_feat_ch),
        )

        # self.pos_encoding = self.posenc(d_hid=16, n_samples=self.n_samples)

        self.base_fc.apply(weights_init)
        self.vis_fc2.apply(weights_init)
        self.vis_fc.apply(weights_init)
        # self.geometry_fc.apply(weights_init)
        self.rgb_fc.apply(weights_init)
        self.neuray_fc.apply(weights_init)

    def forward(self, view_dependent_tokens, bottleneck_feats, ray_diff, invalid_features, **kwargs):
        """ibrnet dim e.g. [6, 64, 8, 35]
        :param rgb_feat:    rgbs and image features [n_rays, n_samples, n_views, n_feat] == img_feat
        :param neuray_feat: rgbs and image features [n_rays, n_samples, n_views, n_feat] == viz_feat
        :param ray_diff: ray direction difference   [n_rays, n_samples, n_views, 4], first 3 channels are directions, ## tensor encodes information about how rays in the novel view differ from rays in the source views
        last channel is inner product
        :param mask: mask for whether each projection is valid or not. [n_rays, n_samples, n_views, 1]
        :return: rgb and density output, [n_rays, n_samples, 4]
        """
        """ibrnet dim e.g. [6, 64, 8, 35]
        :param view_dependent_tokens: (B*n_pts, n_views, C) = (B*num_rays*point_per_ray, n_views, C)
        :param bottleneck_features: (B*n_pts, n_views, C_bottleneck) = (B*num_rays*point_per_ray, n_views, C)
        :param ray_diff: (B*n_pts, n_views, 4) = (B*num_rays*point_per_ray, n_views, 4)
        :param invalid_features: (B*n_pts, n_views) = (B*num_rays*point_per_ray, n_views)
        :return: rgb and density output, [n_rays, n_samples, 4]
        """

        view_dependent_tokens = view_dependent_tokens.reshape(
            (-1, self.n_points_per_ray) + view_dependent_tokens.shape[-2:]
        )  # (B*num_rays, point_per_ray, n_views, C)
        bottleneck_feats = bottleneck_feats.reshape(
            (-1, self.n_points_per_ray) + bottleneck_feats.shape[-2:]
        )  # (B*num_rays, point_per_ray, n_views, C_bottleneck)
        ray_diff = ray_diff.reshape(
            (-1, self.n_points_per_ray) + ray_diff.shape[-2:]
        )  # (B*num_rays, point_per_ray, n_views, 4)
        invalid_features = invalid_features.reshape(
            (-1, self.n_points_per_ray) + invalid_features.shape[-1:]
        )  # (B*num_rays, point_per_ray, n_views)

        ## Assumption: rgb_feat already contains image feature + dir_feat / this can be implemented further
        mask = ~invalid_features.unsqueeze(-1)
        num_views = bottleneck_feats.shape[2]
        direction_feat = self.ray_dir_fc(ray_diff)
        # rgb_in = rgb_feat[..., :3]            ## no used in both original code and necessary code here
        bottleneck_feats = self.img_feat2low(bottleneck_feats)
        bottleneck_feats = bottleneck_feats + direction_feat

        if self.anti_alias_pooling:
            _, dot_prod = torch.split(ray_diff, [3, 1], dim=-1)
            exp_dot_prod = torch.exp(torch.abs(self.s) * (dot_prod - 1))
            weight = (exp_dot_prod - torch.min(exp_dot_prod, dim=2, keepdim=True)[0]) * mask
            weight = weight / (
                torch.sum(weight, dim=2, keepdim=True) + 1e-8
            )  # means it will trust the one more with more consistent view point
        else:
            weight = mask / (torch.sum(mask, dim=2, keepdim=True) + 1e-8)

        # neuray layer 0 ## == feature aggregation networks (M) above pipeline from fig. 19
        weight0 = torch.sigmoid(self.neuray_fc(view_dependent_tokens)) * weight  # [rn,dn,rfn,f]
        mean0, var0 = fused_mean_variance(bottleneck_feats, weight0)  # [n_rays, n_samples, 1, n_feat]    ## 2nd one
        mean1, var1 = fused_mean_variance(bottleneck_feats, weight)  # [n_rays, n_samples, 1, n_feat]    ## 1st one
        globalfeat = torch.cat([mean0, var0, mean1, var1], dim=-1)  # [n_rays, n_samples, 1, 2*n_feat]

        x = torch.cat(
            [globalfeat.expand(-1, -1, num_views, -1), bottleneck_feats, view_dependent_tokens], dim=-1
        )  # [n_rays, n_samples, n_views, 3*n_feat]
        x = self.base_fc(x)  ## after concat it gives input for net A

        x_vis = self.vis_fc(x * weight)
        x_res, vis = torch.split(x_vis, [x_vis.shape[-1] - 1, 1], dim=-1)
        vis = F.sigmoid(vis) * mask
        x = x + x_res
        vis = self.vis_fc2(x * vis) * mask  ## above one from Network A from Fig. 19
        weight = vis / (
            torch.sum(vis, dim=2, keepdim=True) + 1e-8
        )  ## normalized: weighed mean and var ## weight == buttom from net A [N, K, 32]

        mean, var = fused_mean_variance(x, weight)
        globalfeat = torch.cat(
            [mean.squeeze(2), var.squeeze(2), weight.mean(dim=2)], dim=-1
        )  # [n_rays, n_samples, 32*2+1]
        globalfeat = self.geometry_fc(globalfeat)  # [n_rays, n_samples, att_feat] ## MLP for input transformer

        # num_valid_obs = torch.sum(mask, dim=2)
        # num_valid_obs = num_valid_obs > torch.mean(num_valid_obs, dtype=float)  ## making boolean

        return globalfeat.flatten(0, 1).unsqueeze(-2)  # (B*num_rays*point_per_ray, 1, C)
        # return globalfeat, num_valid_obs


# class IBRNetWithNeuRay(nn.Module):
#     def __init__(
#         self, neuray_in_dim=32, in_feat_ch=32, n_samples=64, att_feat=16, d_model=103, rbs=2048, nhead=4, **kwargs
#     ):
#         super().__init__()
#         # self.args = args
#         self.anti_alias_pooling = False
#         if self.anti_alias_pooling:
#             self.s = nn.Parameter(torch.tensor(0.2), requires_grad=True)
#         activation_func = nn.ELU(
#             inplace=True
#         )  ## (+): Mean Outputs Closer to Zero: want activations with mean outputs closer to zero.        ## nn.LeakyReLU: (+): faster convergence, When the distribution of the negative values in your dataset is meaningful and shouldn't be discarded.
#         self.n_samples = n_samples
#         self.ray_dir_fc = nn.Sequential(
#             nn.Linear(4, 16),  ## defualt: 4
#             activation_func,
#             nn.Linear(16, in_feat_ch),  ## default: in_feat_ch + 3
#             activation_func,
#         )

#         self.base_fc = nn.Sequential(
#             nn.Linear((in_feat_ch) * 5 + neuray_in_dim, 64),  ## default: ((in_feat_ch+3)*5+neuray_in_dim, 64)
#             activation_func,
#             nn.Linear(64, 32),
#             activation_func,
#         )

#         self.vis_fc = nn.Sequential(
#             nn.Linear(32, 32),
#             activation_func,
#             nn.Linear(32, 33),
#             activation_func,
#         )

#         self.vis_fc2 = nn.Sequential(nn.Linear(32, 32), activation_func, nn.Linear(32, 1), nn.Sigmoid())

#         self.geometry_fc = nn.Sequential(
#             nn.Linear(32 * 2 + 1, att_feat * 2),  ## default: (32*2+1, 64)
#             activation_func,
#             nn.Linear(att_feat * 2, att_feat),
#             activation_func,
#         )

#         # self.ray_attention = MultiHeadAttention(nhead, att_feat, 4, 4)              ## default: (4, 16, 4, 4)
#         self.out_geometry_fc = nn.Sequential(nn.Linear(16, 16), activation_func, nn.Linear(16, 1), nn.ReLU())

#         self.rgb_fc = nn.Sequential(
#             nn.Linear(32 + 1 + 4, 16), activation_func, nn.Linear(16, 8), activation_func, nn.Linear(8, 1)
#         )

#         self.neuray_fc = nn.Sequential(
#             nn.Linear(
#                 neuray_in_dim,
#                 8,
#             ),
#             activation_func,
#             nn.Linear(8, 1),
#         )

#         self.img_feat2low = nn.Sequential(
#             nn.Linear(rbs, rbs // 4),  ## TODO: replace this hard coded with the flexible
#             activation_func,
#             nn.Linear(rbs // 4, d_model),
#         )

#         # self.pos_encoding = self.posenc(d_hid=16, n_samples=self.n_samples)

#         self.base_fc.apply(weights_init)
#         self.vis_fc2.apply(weights_init)
#         self.vis_fc.apply(weights_init)
#         # self.geometry_fc.apply(weights_init)
#         self.rgb_fc.apply(weights_init)
#         self.neuray_fc.apply(weights_init)

#     def forward(self, rgb_feat, neuray_feat, ray_diff, mask):
#         """ibrnet dim e.g. [6, 64, 8, 35]
#         :param rgb_feat:    rgbs and image features [n_rays, n_samples, n_views, n_feat] == img_feat
#         :param neuray_feat: rgbs and image features [n_rays, n_samples, n_views, n_feat] == viz_feat
#         :param ray_diff: ray direction difference   [n_rays, n_samples, n_views, 4], first 3 channels are directions, ## tensor encodes information about how rays in the novel view differ from rays in the source views
#         last channel is inner product
#         :param mask: mask for whether each projection is valid or not. [n_rays, n_samples, n_views, 1]
#         :return: rgb and density output, [n_rays, n_samples, 4]
#         """

#         ## Assumption: rgb_feat already contains image feature + dir_feat / this can be implemented further
#         num_views = rgb_feat.shape[2]
#         direction_feat = self.ray_dir_fc(ray_diff)
#         # rgb_in = rgb_feat[..., :3]            ## no used in both original code and necessary code here
#         rgb_feat = self.img_feat2low(rgb_feat)
#         rgb_feat = rgb_feat + direction_feat

#         if self.anti_alias_pooling:
#             _, dot_prod = torch.split(ray_diff, [3, 1], dim=-1)
#             exp_dot_prod = torch.exp(torch.abs(self.s) * (dot_prod - 1))
#             weight = (exp_dot_prod - torch.min(exp_dot_prod, dim=2, keepdim=True)[0]) * mask
#             weight = weight / (
#                 torch.sum(weight, dim=2, keepdim=True) + 1e-8
#             )  # means it will trust the one more with more consistent view point
#         else:
#             weight = mask / (torch.sum(mask, dim=2, keepdim=True) + 1e-8)

#         # neuray layer 0 ## == feature aggregation networks (M) above pipeline from fig. 19
#         weight0 = torch.sigmoid(self.neuray_fc(neuray_feat)) * weight  # [rn,dn,rfn,f]
#         mean0, var0 = fused_mean_variance(rgb_feat, weight0)  # [n_rays, n_samples, 1, n_feat]    ## 2nd one
#         mean1, var1 = fused_mean_variance(rgb_feat, weight)  # [n_rays, n_samples, 1, n_feat]    ## 1st one
#         globalfeat = torch.cat([mean0, var0, mean1, var1], dim=-1)  # [n_rays, n_samples, 1, 2*n_feat]

#         x = torch.cat(
#             [globalfeat.expand(-1, -1, num_views, -1), rgb_feat, neuray_feat], dim=-1
#         )  # [n_rays, n_samples, n_views, 3*n_feat]
#         x = self.base_fc(x)  ## after concat it gives input for net A

#         x_vis = self.vis_fc(x * weight)
#         x_res, vis = torch.split(x_vis, [x_vis.shape[-1] - 1, 1], dim=-1)
#         vis = F.sigmoid(vis) * mask
#         x = x + x_res
#         vis = self.vis_fc2(x * vis) * mask  ## above one from Network A from Fig. 19
#         weight = vis / (
#             torch.sum(vis, dim=2, keepdim=True) + 1e-8
#         )  ## normalized: weighed mean and var ## weight == buttom from net A [N, K, 32]

#         mean, var = fused_mean_variance(x, weight)
#         globalfeat = torch.cat(
#             [mean.squeeze(2), var.squeeze(2), weight.mean(dim=2)], dim=-1
#         )  # [n_rays, n_samples, 32*2+1]
#         globalfeat = self.geometry_fc(globalfeat)  # [n_rays, n_samples, att_feat] ## MLP for input transformer

#         # num_valid_obs = torch.sum(mask, dim=2)
#         # num_valid_obs = num_valid_obs > torch.mean(num_valid_obs, dtype=float)  ## making boolean

#         return globalfeat
#         # return globalfeat, num_valid_obs