Spaces:
Running
on
Zero
Running
on
Zero
File size: 31,280 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 |
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scenedino.common import util
class ImplicitNet(nn.Module):
"""
Represents a MLP;
Original code from IGR
"""
def __init__(
self,
d_in,
dims,
skip_in=(),
d_out=4,
geometric_init=True,
radius_init=0.3,
beta=0.0,
output_init_gain=2.0,
num_position_inputs=3,
sdf_scale=1.0,
dim_excludes_skip=False,
combine_layer=1000,
combine_type="average",
):
"""
:param d_in input size
:param dims dimensions of hidden layers. Num hidden layers == len(dims)
:param skip_in layers with skip connections from input (residual)
:param d_out output size
:param geometric_init if true, uses geometric initialization
(to SDF of sphere)
:param radius_init if geometric_init, then SDF sphere will have
this radius
:param beta softplus beta, 100 is reasonable; if <=0 uses ReLU activations instead
:param output_init_gain output layer normal std, only used for
output dimension >= 1, when d_out >= 1
:param dim_excludes_skip if true, dimension sizes do not include skip
connections
"""
super().__init__()
dims = [d_in] + dims + [d_out]
if dim_excludes_skip:
for i in range(1, len(dims) - 1):
if i in skip_in:
dims[i] += d_in
self.num_layers = len(dims)
self.skip_in = skip_in
self.dims = dims
self.combine_layer = combine_layer
self.combine_type = combine_type
for layer in range(0, self.num_layers - 1):
if layer + 1 in skip_in:
out_dim = dims[layer + 1] - d_in
else:
out_dim = dims[layer + 1]
lin = nn.Linear(dims[layer], out_dim)
# if true preform geometric initialization
if geometric_init:
if layer == self.num_layers - 2:
# Note our geometric init is negated (compared to IDR)
# since we are using the opposite SDF convention:
# inside is +
nn.init.normal_(
lin.weight[0],
mean=-np.sqrt(np.pi) / np.sqrt(dims[layer]) * sdf_scale,
std=0.00001,
)
nn.init.constant_(lin.bias[0], radius_init)
if d_out > 1:
# More than SDF output
nn.init.normal_(lin.weight[1:], mean=0.0, std=output_init_gain)
nn.init.constant_(lin.bias[1:], 0.0)
else:
nn.init.constant_(lin.bias, 0.0)
nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
if d_in > num_position_inputs and (layer == 0 or layer in skip_in):
# Special handling for input to allow positional encoding
nn.init.constant_(lin.weight[:, -d_in + num_position_inputs :], 0.0)
else:
nn.init.constant_(lin.bias, 0.0)
nn.init.kaiming_normal_(lin.weight, a=0, mode="fan_in")
setattr(self, "lin" + str(layer), lin)
if beta > 0:
self.activation = nn.Softplus(beta=beta)
else:
# Vanilla ReLU
self.activation = nn.ReLU()
def forward(self, x, combine_inner_dims=(1,)):
"""
:param x (..., d_in)
:param combine_inner_dims Combining dimensions for use with multiview inputs.
Tensor will be reshaped to (-1, combine_inner_dims, ...) and reduced using combine_type
on dim 1, at combine_layer
"""
x_init = x
for layer in range(0, self.num_layers - 1):
lin = getattr(self, "lin" + str(layer))
if layer == self.combine_layer:
x = util.combine_interleaved(x, combine_inner_dims, self.combine_type)
x_init = util.combine_interleaved(
x_init, combine_inner_dims, self.combine_type
)
if layer < self.combine_layer and layer in self.skip_in:
x = torch.cat([x, x_init], -1) / np.sqrt(2)
x = lin(x)
if layer < self.num_layers - 2:
x = self.activation(x)
return x
@classmethod
def from_conf(cls, conf, d_in, d_out):
return cls(d_in=d_in, d_out=d_out, **conf)
# @classmethod
# def from_conf(cls, conf, d_in, **kwargs):
# # PyHocon construction
# return cls(
# d_in,
# conf.get_list("dims"),
# skip_in=conf.get_list("skip_in"),
# beta=conf.get_float("beta", 0.0),
# dim_excludes_skip=conf.get_bool("dim_excludes_skip", False),
# combine_layer=conf.get_int("combine_layer", 1000),
# combine_type=conf.get_string("combine_type", "average"), # average | max
# **kwargs,
# )
"""
GeoNeRF
https://github.com/idiap/GeoNeRF/blob/e6249fdae5672853c6bbbd4ba380c4c166d02c95/model/self_attn_renderer.py#L60
"""
# Custom TransposeLayer to perform transpose operation
class TransposeLayer(nn.Module):
def __init__(self):
super(TransposeLayer, self).__init__()
def forward(self, x):
print("x_shape before transpose: ", x.shape)
return x.transpose(1, 2)
#
# class CNN2AE(nn.Module):
# def __init__(self, num_channels, num_features, desired_spatial_output): ## reduced mapping: num_points |-> num_features
# super(CNN2AE, self).__init__()
# self.conv1 = nn.Conv1d(num_channels, num_channels*2, kernel_size=3, stride=1, padding=1)
# self.conv2 = nn.Conv1d(num_channels*2, num_channels*4, kernel_size=3, stride=1, padding=1)
# self.conv3 = nn.Conv1d(num_channels*4, num_channels*8, kernel_size=3, stride=1, padding=1)
# self.pool = nn.AvgPool1d(kernel_size=2, stride=2)
# self.desired_spatial_output = desired_spatial_output
# # self.fc = nn.Linear(num_channels*4 * num_features, num_features) # Fully connected layer to further reduce dimension
# # self.fc = nn.Linear(num_channels*4 * (num_features // 4), num_channels) # Fully connected layer to reduce dimension
#
# def forward(self, x): ## input_tensor's shape: (batch_size=1, C=num_channels, M=num_points)
# _, num_channels, num_features = x.shape
# x = self.pool(nn.functional.relu(self.conv1(x)))
# x = self.pool(nn.functional.relu(self.conv2(x)))
# x = self.pool(nn.functional.relu(self.conv3(x)))
# x = x.view(x.size(0), num_channels, self.desired_spatial_output) # Reshape to (batch_size, num_channels, reduced_features)
# return x
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
) # Use GPU if available, else CPU
class CNN2AE(
nn.Module
): ## convolute density sampled features along a ray from end of cam's frustum to the end. ( n_coarse==16 x att_feat==32 x (8x8) )
def __init__(self, num_channels: int = 32, num_features: int = 64):
super(CNN2AE, self).__init__()
self.n_coarse = num_features
self.conv1 = nn.Conv1d(
num_channels, num_channels, kernel_size=3, stride=1, padding=1
)
# self.conv2 = nn.Conv1d(num_channels*2, num_channels*4, kernel_size=3, stride=1, padding=1)
self.pool = nn.AvgPool1d(kernel_size=2, stride=2)
# self.fc = nn.Linear(num_channels * num_features, num_features) # Fully connected layer to further reduce dimension
# self.fc = None # We will initialize this later
def forward(self, x): ## , desired_spatial_output):
assert (
x.size(0) % self.n_coarse
) == 0, f"__given points should be dividable by n_coarse: {self.n_coarse},but points given: {x.size(0)}"
# x = x.to(device) # Move the input data to the device
# B_, C_, M_ = x.shape # Get the new number of channels and points
x = self.pool(F.relu(self.conv1(x))) # Apply first conv layer and pool
x = self.pool(F.relu(self.conv1(x))) # Apply second conv layer and pool
# if self.fc is None:
# # Initialize the fully connected layer now that we know the input size
# self.fc = nn.Linear(C_ * M_, C_ * desired_spatial_output).to(device)
# x = x.view(B_, C_ * M_) # Reshape to (batch_size, C * M)
# x = self.fc(x) # Apply fully connected layer
# x = x.view(B_, C_, desired_spatial_output) # Reshape to (batch_size, num_channels, desired_spatial_output)
return x
## Auto-encoder network
class ConvAutoEncoder(nn.Module): ## purpose: to enforce the geometric generalization
def __init__(
self, num_ch: int = 32, S_: int = 64
): ## S:= Sequence length of the input tensor. i.e. nb_samples_per_ray
super(ConvAutoEncoder, self).__init__()
# Encoder
self.conv1 = nn.Sequential(
nn.Conv1d(num_ch, num_ch * 2, 3, stride=1, padding=1),
# TransposeLayer(), # Use the custom TransposeLayer to transpose the output
nn.LayerNorm(
S_, elementwise_affine=False
), ## RuntimeError: Given normalized_shape=[64], expected input with shape [*, 64], but got input of size[1, 64, 100000]
nn.ELU(alpha=1.0, inplace=True),
# TransposeLayer(), # Use the custom TransposeLayer to transpose the output
nn.MaxPool1d(2),
)
self.conv2 = nn.Sequential(
nn.Conv1d(num_ch * 2, num_ch * 4, 3, stride=1, padding=1),
# TransposeLayer(), # Use the custom TransposeLayer to transpose the output
nn.LayerNorm(S_ // 2, elementwise_affine=False),
nn.ELU(alpha=1.0, inplace=True),
# TransposeLayer(), # Use the custom TransposeLayer to transpose the output
nn.MaxPool1d(2),
)
self.conv3 = nn.Sequential(
nn.Conv1d(num_ch * 4, num_ch * 4, 3, stride=1, padding=1),
# TransposeLayer(), # Use the custom TransposeLayer to transpose the output
nn.LayerNorm(S_ // 4, elementwise_affine=False),
nn.ELU(alpha=1.0, inplace=True),
# TransposeLayer(), # Use the custom TransposeLayer to transpose the output
nn.MaxPool1d(2),
)
# Decoder
self.t_conv1 = nn.Sequential(
nn.ConvTranspose1d(num_ch * 4, num_ch * 4, 4, stride=2, padding=1),
nn.LayerNorm(S_ // 4, elementwise_affine=False),
nn.ELU(alpha=1.0, inplace=True),
)
self.t_conv2 = nn.Sequential(
nn.ConvTranspose1d(num_ch * 8, num_ch * 2, 4, stride=2, padding=1),
nn.LayerNorm(S_ // 2, elementwise_affine=False),
nn.ELU(alpha=1.0, inplace=True),
)
self.t_conv3 = nn.Sequential(
nn.ConvTranspose1d(num_ch * 4, num_ch, 4, stride=2, padding=1),
nn.LayerNorm(S_, elementwise_affine=False),
nn.ELU(alpha=1.0, inplace=True),
)
# Output
self.conv_out = nn.Sequential(
nn.Conv1d(num_ch * 2, num_ch, 3, stride=1, padding=1),
nn.LayerNorm(S_, elementwise_affine=False),
nn.ELU(alpha=1.0, inplace=True),
)
def forward(self, x):
input = x
x = self.conv1(x)
conv1_out = x
x = self.conv2(x)
conv2_out = x
x = self.conv3(x)
x = self.t_conv1(x)
x = self.t_conv2(torch.cat([x, conv2_out], dim=1))
x = self.t_conv3(torch.cat([x, conv1_out], dim=1))
x = self.conv_out(torch.cat([x, input], dim=1))
return x
"""
Transformer encoder part from IBRNet network
https://github.com/googleinterns/IBRNet/blob/master/ibrnet/mlp_network.py
"""
class ScaledDotProductAttention(nn.Module):
"""Scaled Dot-Product Attention"""
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
# self.dropout = nn.Dropout(attn_dropout)
def forward(self, q, k, v, mask=None):
attn = torch.matmul(
q / self.temperature, k.transpose(2, 3)
) ### ?? [32768, 4, 7, 7]
if mask is not None: ### [32768, 1, 7]
mask = mask.unsqueeze(-1) ##
mask = mask.expand(
-1, attn.shape[1], -1, attn.shape[-1]
) ## TODO: matrix should be investiated to validate the operator
mask = 1.0 - (
(1.0 - mask) * (1.0 - mask.transpose(-2, -1))
) ### As being symmetric of the mask matrix => the info of masked info won't give result: 2 problems: 1) computation bottleneck demand, eval_batch_size=25000 decreasing (setup pipeline using smaller pipeline nerf.py)
attn = attn.masked_fill(
mask == 1, -1e9
) ## masking should be done when the value of invalidity as boolean is 1 by making the value of element zero (numerical stability)
# attn = attn * mask
"""
def masked_fill(self, mask, value):
result = self.clone() # Start with a copy of the original data
result[mask] = value # Replace values where the mask is true
return result
"""
attn = F.softmax(attn, dim=-1)
# attn = self.dropout(F.softmax(attn, dim=-1))
output = torch.matmul(attn, v)
return output, attn
class PositionwiseFeedForward(nn.Module):
"""A two-feed-forward-layer module"""
def __init__(self, d_in, d_hid, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
# self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = self.w_2(F.relu(self.w_1(x)))
# x = self.dropout(x)
x += residual
x = self.layer_norm(x)
return x
class PoswiseFF_emb4enc(nn.Module):
"""A two-feed-forward-layer module (tailored to encoder for DFT model's input) inspired code from Transformer's encoder"""
def __init__(self, d_in, d_hid, d_out, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
self.w_2 = nn.Linear(d_hid, d_out) # position-wise
self.w_match = nn.Linear(d_in, d_out) # position-wise
# self.post_layer_norm = nn.LayerNorm(d_out, eps=1e-6)
self.pre_layer_norm = nn.LayerNorm(d_in, eps=1e-6)
# self.dropout = nn.Dropout(dropout)
def forward(self, x):
# embedding for residual input
emb_residual = self.w_match(x)
# Pre-layer normalization
x = self.pre_layer_norm(x)
# Transform the (normalized) input
x = self.w_2(
F.elu(self.w_1(x))
) ## default: ReLU | or F.leaky_relu, LeakyReLU used to handle dying gradients, espeically when dense outputs are expected, so that it wouldn't lose expressiveness for Transformer due to lack of info
# x = self.dropout(x)
# Post-layer normaliation
# x = self.post_layer_norm(x)
# Residual connection
x += emb_residual
return x
class PreLNPositionwiseFeedForward(nn.Module):
"""A two-feed-forward-layer module"""
def __init__(self, d_in, d_hid, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
# self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
x = self.layer_norm(x)
x = self.w_2(F.leaky_relu(self.w_1(x))) ## default: F.relu
# x = self.dropout(x)
x += residual
return x
def make_embedding_encoder(
config, input_channels: int, output_channels: int
) -> Optional[nn.Module]:
emb_enc_type = config.get("type", "none")
non_linearity = nn.ELU() # make configurable
if emb_enc_type == "none":
return None
elif emb_enc_type == "pwf":
return PoswiseFF_emb4enc(input_channels, 2 * output_channels, output_channels)
elif emb_enc_type == "ff":
return nn.Sequential(
nn.Linear(input_channels, 2 * output_channels, bias=True),
non_linearity,
nn.Linear(2 * output_channels, output_channels, bias=True),
) ## default: ReLU | nn.LeakyReLU()
elif emb_enc_type == "ffh":
return nn.Sequential(
nn.Linear(input_channels, output_channels, bias=True)
) ## default: ReLU | nn.LeakyReLU()
elif emb_enc_type == "hpwf":
return nn.Sequential( ## == mlp.PositionwiseFeedForward
nn.Linear(input_channels, 2 * output_channels, bias=True),
non_linearity,
nn.LayerNorm(2 * output_channels, eps=1e-6),
nn.Linear(2 * output_channels, output_channels, bias=True),
)
else:
raise NotImplementedError(
"__unrecognized input for emb_enc, not using an embedding encoder."
)
return None
class MultiHeadAttention(nn.Module):
"""Multi-Head Attention module"""
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(temperature=d_k**0.5)
# self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
residual = q
# Pass through the pre-attention projection: b x lq x (n*dv)
# Separate different heads: b x lq x n x dv
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# Transpose for attention dot product: b x n x lq x dv
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1) # For head axis broadcasting.
q, attn = self.attention(q, k, v, mask=mask)
# Transpose to move the head dimension back: b x lq x n x dv
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
# q = self.dropout(self.fc(q))
q = self.fc(q)
q += residual
q = self.layer_norm(q)
return q, attn
class PreLNMultiHeadAttention(nn.Module):
"""Multi-Head Attention module"""
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(temperature=d_k**0.5)
# self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
residual = q
q = self.layer_norm(q)
# Pass through the pre-attention projection: b x lq x (n*dv)
# Separate different heads: b x lq x n x dv
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# Transpose for attention dot product: b x n x lq x dv
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1) # For head axis broadcasting.
q, attn = self.attention(q, k, v, mask=mask)
# Transpose to move the head dimension back: b x lq x n x dv
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
# q = self.dropout(self.fc(q))
q = self.fc(q)
q += residual
return q, attn
class EncoderLayer(nn.Module):
"""Compose with two layers"""
def __init__(
self, d_model, d_inner, n_head, d_k, d_v, dropout=0, pre_ln: bool = False
):
super(EncoderLayer, self).__init__()
if pre_ln:
self.slf_attn = PreLNMultiHeadAttention(
n_head, d_model, d_k, d_v, dropout=dropout
)
self.pos_ffn = PreLNPositionwiseFeedForward(
d_model, d_inner, dropout=dropout
)
else:
self.slf_attn = MultiHeadAttention(
n_head, d_model, d_k, d_v, dropout=dropout
)
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
def forward(self, enc_input, slf_attn_mask=None):
enc_output, enc_slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask
)
enc_output = self.pos_ffn(enc_output)
return enc_output, enc_slf_attn
"""(modified) Transformer arch from Pytorch library
to be compatible with nn.TransformerEncoder() as input arg"""
class TrEnLayer(nn.Module):
r"""
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
enable_nested_tensor: if True, input will automatically convert to nested tensor
(and convert back on output). This will improve the overall performance of
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
"""
def __init__(
self,
encoder_layer,
num_layers,
norm=None,
enable_nested_tensor=True,
mask_check=True,
):
super(TrEnLayer, self).__init__()
# self.layers = nn.ModuleList([deepcopy(encoder_layer) for _ in range(num_layers)])
self.layers = TTF._get_clones(encoder_layer, num_layers) ## deep copy
self.num_layers = num_layers
self.norm = norm
self.enable_nested_tensor = enable_nested_tensor
self.mask_check = mask_check
def forward(
self,
src: torch.Tensor,
mask: Optional[torch.Tensor] = None,
src_key_padding_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequence to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
if src_key_padding_mask is not None:
_skpm_dtype = src_key_padding_mask.dtype
if _skpm_dtype != torch.bool and not torch.is_floating_point(
src_key_padding_mask
):
raise AssertionError(
"only bool and floating types of key_padding_mask are supported"
)
output = src
convert_to_nested = False
first_layer = self.layers[0]
src_key_padding_mask_for_layers = src_key_padding_mask
why_not_sparsity_fast_path = ""
str_first_layer = "self.layers[0]"
# if not isinstance(first_layer, EncoderLayer):
# why_not_sparsity_fast_path = f"{str_first_layer} was not IBR EncoderLayer"
# elif first_layer.norm_first :
# why_not_sparsity_fast_path = f"{str_first_layer}.norm_first was True"
# elif first_layer.training:
# why_not_sparsity_fast_path = f"{str_first_layer} was in training mode"
# elif not first_layer.self_attn.batch_first:
# why_not_sparsity_fast_path = f" {str_first_layer}.self_attn.batch_first was not True"
# elif not first_layer.self_attn._qkv_same_embed_dim:
# why_not_sparsity_fast_path = f"{str_first_layer}.self_attn._qkv_same_embed_dim was not True"
# elif not first_layer.activation_relu_or_gelu:
# why_not_sparsity_fast_path = f" {str_first_layer}.activation_relu_or_gelu was not True"
# elif not (first_layer.norm1.eps == first_layer.norm2.eps) :
# why_not_sparsity_fast_path = f"{str_first_layer}.norm1.eps was not equal to {str_first_layer}.norm2.eps"
# elif not src.dim() == 3:
# why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
# elif not self.enable_nested_tensor:
# why_not_sparsity_fast_path = "enable_nested_tensor was not True"
# elif src_key_padding_mask is None:
# why_not_sparsity_fast_path = "src_key_padding_mask was None"
# elif (((not hasattr(self, "mask_check")) or self.mask_check)
# and not torch._nested_tensor_from_mask_left_aligned(src, src_key_padding_mask.logical_not())):
# why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned"
# elif output.is_nested:
# why_not_sparsity_fast_path = "NestedTensor input is not supported"
# elif mask is not None:
# why_not_sparsity_fast_path = "src_key_padding_mask and mask were both supplied"
# elif first_layer.self_attn.num_heads % 2 == 1:
# why_not_sparsity_fast_path = "num_head is odd"
# elif torch.is_autocast_enabled():
# why_not_sparsity_fast_path = "autocast is enabled"
#
# if not why_not_sparsity_fast_path:
# tensor_args = (
# src,
# first_layer.self_attn.in_proj_weight,
# first_layer.self_attn.in_proj_bias,
# first_layer.self_attn.out_proj.weight,
# first_layer.self_attn.out_proj.bias,
# first_layer.norm1.weight,
# first_layer.norm1.bias,
# first_layer.norm2.weight,
# first_layer.norm2.bias,
# first_layer.linear1.weight,
# first_layer.linear1.bias,
# first_layer.linear2.weight,
# first_layer.linear2.bias,
# )
#
# if torch.overrides.has_torch_function(tensor_args):
# why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
# elif not (src.is_cuda or 'cpu' in str(src.device)):
# why_not_sparsity_fast_path = "src is neither CUDA nor CPU"
# elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
# why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
# "input/output projection weights or biases requires_grad")
#
# if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None):
# convert_to_nested = True
# output = torch._nested_tensor_from_mask(output, src_key_padding_mask.logical_not(), mask_check=False)
# src_key_padding_mask_for_layers = None
for mod in self.layers:
# output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask_for_layers)
output = mod(output, slf_attn_mask=src_key_padding_mask_for_layers)[0]
if convert_to_nested:
output = output.to_padded_tensor(0.0)
if self.norm is not None:
output = self.norm(output)
return output
# class TrEnLayer(torch.nn.Module):
# def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
# activation="relu", batch_first=True, norm_first=False,
# activation_relu_or_gelu=True):
# super(TransformerEncoderLayer, self).__init__()
# self.self_attn = torch.nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# # Implementation of Feedforward model
# self.linear1 = torch.nn.Linear(d_model, dim_feedforward)
# self.dropout = torch.nn.Dropout(dropout)
# self.linear2 = torch.nn.Linear(dim_feedforward, d_model)
#
# self.norm1 = torch.nn.LayerNorm(d_model)
# self.norm2 = torch.nn.LayerNorm(d_model)
# self.dropout1 = torch.nn.Dropout(dropout)
# self.dropout2 = torch.nn.Dropout(dropout)
#
# # Legacy string support for activation function.
# if isinstance(activation, str):
# self.activation = _get_activation_fn(activation)
# else:
# self.activation = activation
#
# self.pos_ffn = PositionwiseFeedForward(d_model, dim_feedforward, dropout)
#
# self.self_attn.batch_first = batch_first
# self.self_attn._qkv_same_embed_dim = True # assuming d_model is the same for query, key, value
# self.norm_first = norm_first
# self.activation_relu_or_gelu = activation_relu_or_gelu
#
# def forward(self, src, src_mask=None, src_key_padding_mask=None):
# src2 = self.self_attn(src, src, src, attn_mask=src_mask,
# key_padding_mask=src_key_padding_mask)[0]
# if self.norm_first:
# src = src + self.dropout1(src2)
# src = self.norm1(src)
# src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
# src = src + self.dropout2(src2)
# src = self.norm2(src)
# else:
# src = self.norm1(src)
# src = src + self.dropout1(src2)
# src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
# src = self.norm2(src)
# src = src + self.dropout2(src2)
# return src
# '''
# c.f. nn.transformer.py
# '''
# def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
# if activation == "relu":
# return F.relu
# elif activation == "gelu":
# return F.gelu
#
# raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
#
# def _get_clones(module, N):
# return ModuleList([copy.deepcopy(module) for i in range(N)])
|