File size: 31,280 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
from typing import Optional

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from scenedino.common import util


class ImplicitNet(nn.Module):
    """
    Represents a MLP;
    Original code from IGR
    """

    def __init__(
        self,
        d_in,
        dims,
        skip_in=(),
        d_out=4,
        geometric_init=True,
        radius_init=0.3,
        beta=0.0,
        output_init_gain=2.0,
        num_position_inputs=3,
        sdf_scale=1.0,
        dim_excludes_skip=False,
        combine_layer=1000,
        combine_type="average",
    ):
        """
        :param d_in input size
        :param dims dimensions of hidden layers. Num hidden layers == len(dims)
        :param skip_in layers with skip connections from input (residual)
        :param d_out output size
        :param geometric_init if true, uses geometric initialization
               (to SDF of sphere)
        :param radius_init if geometric_init, then SDF sphere will have
               this radius
        :param beta softplus beta, 100 is reasonable; if <=0 uses ReLU activations instead
        :param output_init_gain output layer normal std, only used for
                                output dimension >= 1, when d_out >= 1
        :param dim_excludes_skip if true, dimension sizes do not include skip
        connections
        """
        super().__init__()

        dims = [d_in] + dims + [d_out]
        if dim_excludes_skip:
            for i in range(1, len(dims) - 1):
                if i in skip_in:
                    dims[i] += d_in

        self.num_layers = len(dims)
        self.skip_in = skip_in
        self.dims = dims
        self.combine_layer = combine_layer
        self.combine_type = combine_type

        for layer in range(0, self.num_layers - 1):
            if layer + 1 in skip_in:
                out_dim = dims[layer + 1] - d_in
            else:
                out_dim = dims[layer + 1]
            lin = nn.Linear(dims[layer], out_dim)

            # if true preform geometric initialization
            if geometric_init:
                if layer == self.num_layers - 2:
                    # Note our geometric init is negated (compared to IDR)
                    # since we are using the opposite SDF convention:
                    # inside is +
                    nn.init.normal_(
                        lin.weight[0],
                        mean=-np.sqrt(np.pi) / np.sqrt(dims[layer]) * sdf_scale,
                        std=0.00001,
                    )
                    nn.init.constant_(lin.bias[0], radius_init)
                    if d_out > 1:
                        # More than SDF output
                        nn.init.normal_(lin.weight[1:], mean=0.0, std=output_init_gain)
                        nn.init.constant_(lin.bias[1:], 0.0)
                else:
                    nn.init.constant_(lin.bias, 0.0)
                    nn.init.normal_(lin.weight, 0.0, np.sqrt(2) / np.sqrt(out_dim))
                if d_in > num_position_inputs and (layer == 0 or layer in skip_in):
                    # Special handling for input to allow positional encoding
                    nn.init.constant_(lin.weight[:, -d_in + num_position_inputs :], 0.0)
            else:
                nn.init.constant_(lin.bias, 0.0)
                nn.init.kaiming_normal_(lin.weight, a=0, mode="fan_in")

            setattr(self, "lin" + str(layer), lin)

        if beta > 0:
            self.activation = nn.Softplus(beta=beta)
        else:
            # Vanilla ReLU
            self.activation = nn.ReLU()

    def forward(self, x, combine_inner_dims=(1,)):
        """
        :param x (..., d_in)
        :param combine_inner_dims Combining dimensions for use with multiview inputs.
        Tensor will be reshaped to (-1, combine_inner_dims, ...) and reduced using combine_type
        on dim 1, at combine_layer
        """
        x_init = x
        for layer in range(0, self.num_layers - 1):
            lin = getattr(self, "lin" + str(layer))

            if layer == self.combine_layer:
                x = util.combine_interleaved(x, combine_inner_dims, self.combine_type)
                x_init = util.combine_interleaved(
                    x_init, combine_inner_dims, self.combine_type
                )

            if layer < self.combine_layer and layer in self.skip_in:
                x = torch.cat([x, x_init], -1) / np.sqrt(2)

            x = lin(x)
            if layer < self.num_layers - 2:
                x = self.activation(x)

        return x

    @classmethod
    def from_conf(cls, conf, d_in, d_out):
        return cls(d_in=d_in, d_out=d_out, **conf)

    # @classmethod
    # def from_conf(cls, conf, d_in, **kwargs):
    #     # PyHocon construction
    #     return cls(
    #         d_in,
    #         conf.get_list("dims"),
    #         skip_in=conf.get_list("skip_in"),
    #         beta=conf.get_float("beta", 0.0),
    #         dim_excludes_skip=conf.get_bool("dim_excludes_skip", False),
    #         combine_layer=conf.get_int("combine_layer", 1000),
    #         combine_type=conf.get_string("combine_type", "average"),  # average | max
    #         **kwargs,
    #     )


"""
GeoNeRF
https://github.com/idiap/GeoNeRF/blob/e6249fdae5672853c6bbbd4ba380c4c166d02c95/model/self_attn_renderer.py#L60
"""


# Custom TransposeLayer to perform transpose operation
class TransposeLayer(nn.Module):
    def __init__(self):
        super(TransposeLayer, self).__init__()

    def forward(self, x):
        print("x_shape before transpose: ", x.shape)
        return x.transpose(1, 2)


#
# class CNN2AE(nn.Module):
#     def __init__(self, num_channels, num_features, desired_spatial_output): ## reduced mapping: num_points |-> num_features
#         super(CNN2AE, self).__init__()
#         self.conv1 = nn.Conv1d(num_channels, num_channels*2, kernel_size=3, stride=1, padding=1)
#         self.conv2 = nn.Conv1d(num_channels*2, num_channels*4, kernel_size=3, stride=1, padding=1)
#         self.conv3 = nn.Conv1d(num_channels*4, num_channels*8, kernel_size=3, stride=1, padding=1)
#         self.pool = nn.AvgPool1d(kernel_size=2, stride=2)
#         self.desired_spatial_output = desired_spatial_output
#         # self.fc = nn.Linear(num_channels*4 * num_features, num_features)  # Fully connected layer to further reduce dimension
#         # self.fc = nn.Linear(num_channels*4 * (num_features // 4), num_channels)  # Fully connected layer to reduce dimension
#
#     def forward(self, x):   ## input_tensor's shape: (batch_size=1, C=num_channels, M=num_points)
#         _, num_channels, num_features = x.shape
#         x = self.pool(nn.functional.relu(self.conv1(x)))
#         x = self.pool(nn.functional.relu(self.conv2(x)))
#         x = self.pool(nn.functional.relu(self.conv3(x)))
#         x = x.view(x.size(0), num_channels, self.desired_spatial_output)  # Reshape to (batch_size, num_channels, reduced_features)
#         return x

device = torch.device(
    "cuda" if torch.cuda.is_available() else "cpu"
)  # Use GPU if available, else CPU


class CNN2AE(
    nn.Module
):  ## convolute density sampled features along a ray from end of cam's frustum to the end. ( n_coarse==16 x att_feat==32 x (8x8) )
    def __init__(self, num_channels: int = 32, num_features: int = 64):
        super(CNN2AE, self).__init__()
        self.n_coarse = num_features
        self.conv1 = nn.Conv1d(
            num_channels, num_channels, kernel_size=3, stride=1, padding=1
        )
        # self.conv2 = nn.Conv1d(num_channels*2, num_channels*4, kernel_size=3, stride=1, padding=1)
        self.pool = nn.AvgPool1d(kernel_size=2, stride=2)
        # self.fc = nn.Linear(num_channels * num_features, num_features)  # Fully connected layer to further reduce dimension
        # self.fc = None  # We will initialize this later

    def forward(self, x):  ## , desired_spatial_output):
        assert (
            x.size(0) % self.n_coarse
        ) == 0, f"__given points should be dividable by n_coarse: {self.n_coarse},but points given: {x.size(0)}"
        # x = x.to(device)  # Move the input data to the device
        # B_, C_, M_ = x.shape  # Get the new number of channels and points
        x = self.pool(F.relu(self.conv1(x)))  # Apply first conv layer and pool
        x = self.pool(F.relu(self.conv1(x)))  # Apply second conv layer and pool

        # if self.fc is None:
        #     # Initialize the fully connected layer now that we know the input size
        #     self.fc = nn.Linear(C_ * M_, C_ * desired_spatial_output).to(device)

        # x = x.view(B_, C_ * M_)  # Reshape to (batch_size, C * M)
        # x = self.fc(x)  # Apply fully connected layer
        # x = x.view(B_, C_, desired_spatial_output)  # Reshape to (batch_size, num_channels, desired_spatial_output)
        return x


## Auto-encoder network
class ConvAutoEncoder(nn.Module):  ## purpose: to enforce the geometric generalization
    def __init__(
        self, num_ch: int = 32, S_: int = 64
    ):  ## S:= Sequence length of the input tensor. i.e. nb_samples_per_ray
        super(ConvAutoEncoder, self).__init__()
        # Encoder
        self.conv1 = nn.Sequential(
            nn.Conv1d(num_ch, num_ch * 2, 3, stride=1, padding=1),
            # TransposeLayer(),  # Use the custom TransposeLayer to transpose the output
            nn.LayerNorm(
                S_, elementwise_affine=False
            ),  ## RuntimeError: Given normalized_shape=[64], expected input with shape [*, 64], but got input of size[1, 64, 100000]
            nn.ELU(alpha=1.0, inplace=True),
            # TransposeLayer(),  # Use the custom TransposeLayer to transpose the output
            nn.MaxPool1d(2),
        )
        self.conv2 = nn.Sequential(
            nn.Conv1d(num_ch * 2, num_ch * 4, 3, stride=1, padding=1),
            # TransposeLayer(),  # Use the custom TransposeLayer to transpose the output
            nn.LayerNorm(S_ // 2, elementwise_affine=False),
            nn.ELU(alpha=1.0, inplace=True),
            # TransposeLayer(),  # Use the custom TransposeLayer to transpose the output
            nn.MaxPool1d(2),
        )
        self.conv3 = nn.Sequential(
            nn.Conv1d(num_ch * 4, num_ch * 4, 3, stride=1, padding=1),
            # TransposeLayer(),  # Use the custom TransposeLayer to transpose the output
            nn.LayerNorm(S_ // 4, elementwise_affine=False),
            nn.ELU(alpha=1.0, inplace=True),
            # TransposeLayer(),  # Use the custom TransposeLayer to transpose the output
            nn.MaxPool1d(2),
        )

        # Decoder
        self.t_conv1 = nn.Sequential(
            nn.ConvTranspose1d(num_ch * 4, num_ch * 4, 4, stride=2, padding=1),
            nn.LayerNorm(S_ // 4, elementwise_affine=False),
            nn.ELU(alpha=1.0, inplace=True),
        )
        self.t_conv2 = nn.Sequential(
            nn.ConvTranspose1d(num_ch * 8, num_ch * 2, 4, stride=2, padding=1),
            nn.LayerNorm(S_ // 2, elementwise_affine=False),
            nn.ELU(alpha=1.0, inplace=True),
        )
        self.t_conv3 = nn.Sequential(
            nn.ConvTranspose1d(num_ch * 4, num_ch, 4, stride=2, padding=1),
            nn.LayerNorm(S_, elementwise_affine=False),
            nn.ELU(alpha=1.0, inplace=True),
        )
        # Output
        self.conv_out = nn.Sequential(
            nn.Conv1d(num_ch * 2, num_ch, 3, stride=1, padding=1),
            nn.LayerNorm(S_, elementwise_affine=False),
            nn.ELU(alpha=1.0, inplace=True),
        )

    def forward(self, x):
        input = x
        x = self.conv1(x)
        conv1_out = x
        x = self.conv2(x)
        conv2_out = x
        x = self.conv3(x)

        x = self.t_conv1(x)
        x = self.t_conv2(torch.cat([x, conv2_out], dim=1))
        x = self.t_conv3(torch.cat([x, conv1_out], dim=1))

        x = self.conv_out(torch.cat([x, input], dim=1))

        return x


"""
Transformer encoder part from IBRNet network
https://github.com/googleinterns/IBRNet/blob/master/ibrnet/mlp_network.py
"""


class ScaledDotProductAttention(nn.Module):
    """Scaled Dot-Product Attention"""

    def __init__(self, temperature, attn_dropout=0.1):
        super().__init__()
        self.temperature = temperature
        # self.dropout = nn.Dropout(attn_dropout)

    def forward(self, q, k, v, mask=None):
        attn = torch.matmul(
            q / self.temperature, k.transpose(2, 3)
        )  ### ?? [32768, 4, 7, 7]

        if mask is not None:  ### [32768, 1, 7]
            mask = mask.unsqueeze(-1)  ##
            mask = mask.expand(
                -1, attn.shape[1], -1, attn.shape[-1]
            )  ##  TODO: matrix should be investiated to validate the operator
            mask = 1.0 - (
                (1.0 - mask) * (1.0 - mask.transpose(-2, -1))
            )  ### As being symmetric of the mask matrix => the info of masked info won't give result: 2 problems: 1) computation bottleneck demand, eval_batch_size=25000 decreasing (setup pipeline using smaller pipeline nerf.py)
            attn = attn.masked_fill(
                mask == 1, -1e9
            )  ## masking should be done when the value of invalidity as boolean is 1 by making the value of element zero (numerical stability)
            # attn = attn * mask
            """
            def masked_fill(self, mask, value):
                result = self.clone()  # Start with a copy of the original data
                result[mask] = value   # Replace values where the mask is true
                return result
            """

        attn = F.softmax(attn, dim=-1)
        # attn = self.dropout(F.softmax(attn, dim=-1))
        output = torch.matmul(attn, v)

        return output, attn


class PositionwiseFeedForward(nn.Module):
    """A two-feed-forward-layer module"""

    def __init__(self, d_in, d_hid, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Linear(d_in, d_hid)  # position-wise
        self.w_2 = nn.Linear(d_hid, d_in)  # position-wise
        self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
        # self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x

        x = self.w_2(F.relu(self.w_1(x)))
        # x = self.dropout(x)
        x += residual

        x = self.layer_norm(x)

        return x


class PoswiseFF_emb4enc(nn.Module):
    """A two-feed-forward-layer module (tailored to encoder for DFT model's input) inspired code from Transformer's encoder"""

    def __init__(self, d_in, d_hid, d_out, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Linear(d_in, d_hid)  # position-wise
        self.w_2 = nn.Linear(d_hid, d_out)  # position-wise
        self.w_match = nn.Linear(d_in, d_out)  # position-wise
        # self.post_layer_norm = nn.LayerNorm(d_out, eps=1e-6)
        self.pre_layer_norm = nn.LayerNorm(d_in, eps=1e-6)
        # self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # embedding for residual input
        emb_residual = self.w_match(x)

        # Pre-layer normalization
        x = self.pre_layer_norm(x)

        # Transform the (normalized) input
        x = self.w_2(
            F.elu(self.w_1(x))
        )  ## default: ReLU | or F.leaky_relu, LeakyReLU used to handle dying gradients, espeically when dense outputs are expected, so that it wouldn't lose expressiveness for Transformer due to lack of info
        # x = self.dropout(x)

        # Post-layer normaliation
        # x = self.post_layer_norm(x)

        # Residual connection
        x += emb_residual

        return x


class PreLNPositionwiseFeedForward(nn.Module):
    """A two-feed-forward-layer module"""

    def __init__(self, d_in, d_hid, dropout=0.1):
        super().__init__()
        self.w_1 = nn.Linear(d_in, d_hid)  # position-wise
        self.w_2 = nn.Linear(d_hid, d_in)  # position-wise
        self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
        # self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x

        x = self.layer_norm(x)

        x = self.w_2(F.leaky_relu(self.w_1(x)))  ## default: F.relu
        # x = self.dropout(x)
        x += residual

        return x


def make_embedding_encoder(
    config, input_channels: int, output_channels: int
) -> Optional[nn.Module]:
    emb_enc_type = config.get("type", "none")
    non_linearity = nn.ELU()  # make configurable
    if emb_enc_type == "none":
        return None
    elif emb_enc_type == "pwf":
        return PoswiseFF_emb4enc(input_channels, 2 * output_channels, output_channels)
    elif emb_enc_type == "ff":
        return nn.Sequential(
            nn.Linear(input_channels, 2 * output_channels, bias=True),
            non_linearity,
            nn.Linear(2 * output_channels, output_channels, bias=True),
        )  ## default: ReLU |  nn.LeakyReLU()
    elif emb_enc_type == "ffh":
        return nn.Sequential(
            nn.Linear(input_channels, output_channels, bias=True)
        )  ## default: ReLU |  nn.LeakyReLU()
    elif emb_enc_type == "hpwf":
        return nn.Sequential(  ## == mlp.PositionwiseFeedForward
            nn.Linear(input_channels, 2 * output_channels, bias=True),
            non_linearity,
            nn.LayerNorm(2 * output_channels, eps=1e-6),
            nn.Linear(2 * output_channels, output_channels, bias=True),
        )
    else:
        raise NotImplementedError(
            "__unrecognized input for emb_enc, not using an embedding encoder."
        )
        return None


class MultiHeadAttention(nn.Module):
    """Multi-Head Attention module"""

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k**0.5)

        # self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, q, k, v, mask=None):
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q

        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1)  # For head axis broadcasting.

        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        # q = self.dropout(self.fc(q))
        q = self.fc(q)
        q += residual

        q = self.layer_norm(q)

        return q, attn


class PreLNMultiHeadAttention(nn.Module):
    """Multi-Head Attention module"""

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
        self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
        self.fc = nn.Linear(n_head * d_v, d_model, bias=False)

        self.attention = ScaledDotProductAttention(temperature=d_k**0.5)

        # self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, q, k, v, mask=None):
        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
        sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)

        residual = q

        q = self.layer_norm(q)
        # Pass through the pre-attention projection: b x lq x (n*dv)
        # Separate different heads: b x lq x n x dv
        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        # Transpose for attention dot product: b x n x lq x dv
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

        if mask is not None:
            mask = mask.unsqueeze(1)  # For head axis broadcasting.

        q, attn = self.attention(q, k, v, mask=mask)

        # Transpose to move the head dimension back: b x lq x n x dv
        # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
        q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
        # q = self.dropout(self.fc(q))
        q = self.fc(q)
        q += residual

        return q, attn


class EncoderLayer(nn.Module):
    """Compose with two layers"""

    def __init__(
        self, d_model, d_inner, n_head, d_k, d_v, dropout=0, pre_ln: bool = False
    ):
        super(EncoderLayer, self).__init__()
        if pre_ln:
            self.slf_attn = PreLNMultiHeadAttention(
                n_head, d_model, d_k, d_v, dropout=dropout
            )
            self.pos_ffn = PreLNPositionwiseFeedForward(
                d_model, d_inner, dropout=dropout
            )
        else:
            self.slf_attn = MultiHeadAttention(
                n_head, d_model, d_k, d_v, dropout=dropout
            )
            self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, slf_attn_mask=None):
        enc_output, enc_slf_attn = self.slf_attn(
            enc_input, enc_input, enc_input, mask=slf_attn_mask
        )
        enc_output = self.pos_ffn(enc_output)
        return enc_output, enc_slf_attn


"""(modified) Transformer arch from Pytorch library
to be compatible with nn.TransformerEncoder() as input arg"""


class TrEnLayer(nn.Module):
    r"""
    Args:
    encoder_layer: an instance of the TransformerEncoderLayer() class (required).
    num_layers: the number of sub-encoder-layers in the encoder (required).
    norm: the layer normalization component (optional).
    enable_nested_tensor: if True, input will automatically convert to nested tensor
        (and convert back on output). This will improve the overall performance of
        TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
    """

    def __init__(
        self,
        encoder_layer,
        num_layers,
        norm=None,
        enable_nested_tensor=True,
        mask_check=True,
    ):
        super(TrEnLayer, self).__init__()
        # self.layers = nn.ModuleList([deepcopy(encoder_layer) for _ in range(num_layers)])
        self.layers = TTF._get_clones(encoder_layer, num_layers)  ## deep copy
        self.num_layers = num_layers
        self.norm = norm
        self.enable_nested_tensor = enable_nested_tensor
        self.mask_check = mask_check

    def forward(
        self,
        src: torch.Tensor,
        mask: Optional[torch.Tensor] = None,
        src_key_padding_mask: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        r"""Pass the input through the encoder layers in turn.

        Args:
            src: the sequence to the encoder (required).
            mask: the mask for the src sequence (optional).
            src_key_padding_mask: the mask for the src keys per batch (optional).

        Shape:
            see the docs in Transformer class.
        """
        if src_key_padding_mask is not None:
            _skpm_dtype = src_key_padding_mask.dtype
            if _skpm_dtype != torch.bool and not torch.is_floating_point(
                src_key_padding_mask
            ):
                raise AssertionError(
                    "only bool and floating types of key_padding_mask are supported"
                )
        output = src
        convert_to_nested = False
        first_layer = self.layers[0]
        src_key_padding_mask_for_layers = src_key_padding_mask
        why_not_sparsity_fast_path = ""
        str_first_layer = "self.layers[0]"

        # if not isinstance(first_layer, EncoderLayer):
        #     why_not_sparsity_fast_path = f"{str_first_layer} was not IBR EncoderLayer"
        # elif first_layer.norm_first :
        #     why_not_sparsity_fast_path = f"{str_first_layer}.norm_first was True"
        # elif first_layer.training:
        #     why_not_sparsity_fast_path = f"{str_first_layer} was in training mode"
        # elif not first_layer.self_attn.batch_first:
        #     why_not_sparsity_fast_path = f" {str_first_layer}.self_attn.batch_first was not True"
        # elif not first_layer.self_attn._qkv_same_embed_dim:
        #     why_not_sparsity_fast_path = f"{str_first_layer}.self_attn._qkv_same_embed_dim was not True"
        # elif not first_layer.activation_relu_or_gelu:
        #     why_not_sparsity_fast_path = f" {str_first_layer}.activation_relu_or_gelu was not True"
        # elif not (first_layer.norm1.eps == first_layer.norm2.eps) :
        #     why_not_sparsity_fast_path = f"{str_first_layer}.norm1.eps was not equal to {str_first_layer}.norm2.eps"
        # elif not src.dim() == 3:
        #     why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
        # elif not self.enable_nested_tensor:
        #     why_not_sparsity_fast_path = "enable_nested_tensor was not True"
        # elif src_key_padding_mask is None:
        #     why_not_sparsity_fast_path = "src_key_padding_mask was None"
        # elif (((not hasattr(self, "mask_check")) or self.mask_check)
        #         and not torch._nested_tensor_from_mask_left_aligned(src, src_key_padding_mask.logical_not())):
        #     why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned"
        # elif output.is_nested:
        #     why_not_sparsity_fast_path = "NestedTensor input is not supported"
        # elif mask is not None:
        #     why_not_sparsity_fast_path = "src_key_padding_mask and mask were both supplied"
        # elif first_layer.self_attn.num_heads % 2 == 1:
        #     why_not_sparsity_fast_path = "num_head is odd"
        # elif torch.is_autocast_enabled():
        #     why_not_sparsity_fast_path = "autocast is enabled"
        #
        # if not why_not_sparsity_fast_path:
        #     tensor_args = (
        #         src,
        #         first_layer.self_attn.in_proj_weight,
        #         first_layer.self_attn.in_proj_bias,
        #         first_layer.self_attn.out_proj.weight,
        #         first_layer.self_attn.out_proj.bias,
        #         first_layer.norm1.weight,
        #         first_layer.norm1.bias,
        #         first_layer.norm2.weight,
        #         first_layer.norm2.bias,
        #         first_layer.linear1.weight,
        #         first_layer.linear1.bias,
        #         first_layer.linear2.weight,
        #         first_layer.linear2.bias,
        #     )
        #
        #     if torch.overrides.has_torch_function(tensor_args):
        #         why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
        #     elif not (src.is_cuda or 'cpu' in str(src.device)):
        #         why_not_sparsity_fast_path = "src is neither CUDA nor CPU"
        #     elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
        #         why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
        #                                       "input/output projection weights or biases requires_grad")
        #
        #     if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None):
        #         convert_to_nested = True
        #         output = torch._nested_tensor_from_mask(output, src_key_padding_mask.logical_not(), mask_check=False)
        #         src_key_padding_mask_for_layers = None

        for mod in self.layers:
            # output = mod(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask_for_layers)
            output = mod(output, slf_attn_mask=src_key_padding_mask_for_layers)[0]

        if convert_to_nested:
            output = output.to_padded_tensor(0.0)

        if self.norm is not None:
            output = self.norm(output)

        return output


# class TrEnLayer(torch.nn.Module):
#     def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
#                  activation="relu", batch_first=True, norm_first=False,
#                  activation_relu_or_gelu=True):
#         super(TransformerEncoderLayer, self).__init__()
#         self.self_attn = torch.nn.MultiheadAttention(d_model, nhead, dropout=dropout)
#         # Implementation of Feedforward model
#         self.linear1 = torch.nn.Linear(d_model, dim_feedforward)
#         self.dropout = torch.nn.Dropout(dropout)
#         self.linear2 = torch.nn.Linear(dim_feedforward, d_model)
#
#         self.norm1 = torch.nn.LayerNorm(d_model)
#         self.norm2 = torch.nn.LayerNorm(d_model)
#         self.dropout1 = torch.nn.Dropout(dropout)
#         self.dropout2 = torch.nn.Dropout(dropout)
#
#         # Legacy string support for activation function.
#         if isinstance(activation, str):
#             self.activation = _get_activation_fn(activation)
#         else:
#             self.activation = activation
#
#         self.pos_ffn = PositionwiseFeedForward(d_model, dim_feedforward, dropout)
#
#         self.self_attn.batch_first = batch_first
#         self.self_attn._qkv_same_embed_dim = True  # assuming d_model is the same for query, key, value
#         self.norm_first = norm_first
#         self.activation_relu_or_gelu = activation_relu_or_gelu
#
#     def forward(self, src, src_mask=None, src_key_padding_mask=None):
#         src2 = self.self_attn(src, src, src, attn_mask=src_mask,
#                               key_padding_mask=src_key_padding_mask)[0]
#         if self.norm_first:
#             src = src + self.dropout1(src2)
#             src = self.norm1(src)
#             src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
#             src = src + self.dropout2(src2)
#             src = self.norm2(src)
#         else:
#             src = self.norm1(src)
#             src = src + self.dropout1(src2)
#             src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
#             src = self.norm2(src)
#             src = src + self.dropout2(src2)
#         return src

# '''
# c.f. nn.transformer.py
# '''
# def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
#     if activation == "relu":
#         return F.relu
#     elif activation == "gelu":
#         return F.gelu
#
#     raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
#
# def _get_clones(module, N):
#     return ModuleList([copy.deepcopy(module) for i in range(N)])