File size: 22,418 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import torch
import torch.nn as nn
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from . import mlp
from .resnetfc import ResnetFC
from .independent_tokens import BaseIndependentToken, make_independent_token

"""
# BTS model: The BTS model is used to predict the density field for each view of the input images. 
The predicted density fields are stored in a list.

# Stacking density fields: The predicted density fields from the BTS model are stacked along a new dimension, 
creating a tensor of shape (batch_size, num_views, height, width).

# Flattening and embedding: The density fields tensor is reshaped to (batch_size, num_views, height * width), e.g. features are stacked along the row, 
and then passed through an embedding layer that converts the density field values into a suitable format for the Transformer. 
The embedding layer is a linear layer that maps the input features to the desired dimension d_model.

# Transformer encoder: The embedded features are processed by a Transformer encoder, which consists of multiple layers
 of multi-head self-attention and feedforward sublayers. The Transformer encoder is designed to learn and capture
  relationships between the multiple views by attending to the most relevant parts of the input features. (density field as geometric consistency)
  The output of the Transformer encoder has the same shape as the input, (batch_size, num_views, d_model).

# Density field prediction: The transformed features are passed through a density field prediction layer, 
which is a sequential model containing a linear layer followed by a ReLU activation function. This layer predicts 
the accumulated density field for each pixel. The output shape is (batch_size, num_views, 1).

# Reshaping: The accumulated density field tensor is reshaped back to its original spatial dimensions (batch_size, height, width).
"""


def make_attn_layers(config, ndim: int) -> nn.Module:
    num_layers = config.get("n_layers", 3)
    n_heads = config.get("n_heads", 4)
    use_built_in = config.get("IBRAttn", False)
    if use_built_in:
        transformer_enlayer = mlp.EncoderLayer(ndim, ndim, n_heads, ndim, ndim)
        return mlp.TrEnLayer(
            transformer_enlayer, num_layers
        )  ## TODO: replace MHA module with IBRNet network and complete integretable encoder part of transformer
    elif not use_built_in:
        transformer_enlayer = TransformerEncoderLayer(
            ndim, n_heads, dim_feedforward=ndim, batch_first=True
        )
        return TransformerEncoder(transformer_enlayer, num_layers)
    else:
        raise NotImplementedError(f"__unrecognized use_built_in: {use_built_in}")


class MultiViewHead(nn.Module):
    def __init__(
        self,
        emb_encoder: nn.Module | None,
        independent_token_net: BaseIndependentToken,
        attn_layers: nn.Module,
        density_head: nn.Module,
        do_: float = 0.0,
        do_mvh: bool = False,
    ):
        """Attention based feature aggregation module for multi-view density prediction.

        Args:
            emb_encoder (nn.Module, optional): small network to compress the per view feature vectors to a lower dimensional representation. Defaults to Optional[nn.Module].
            independent_feature_net (nn.Module, optional): module to generate the view independent token from the view dependent tokens. Defaults to nn.Module.
            attn_layers (nn.Module, optional): attention layers of the module responsible for information sharing between the views. Defaults to nn.Module.
            density_head (nn.Module, optional): final network layers to predict the density from the view independent token. Defaults to nn.Module.
            do_ (float, optional): probability of dropping out a single view for training. Defaults to 0.0.
            do_mvh (bool, optional): to decide whether the first view feature map should be droppout due to pgt_loss computation. Defaults to 0.0.
        """

        super(MultiViewHead, self).__init__()
        self.emb_encoder = emb_encoder

        self.independent_token_net = independent_token_net
        self.require_bottleneck_feats = (
            self.independent_token_net.require_bottleneck_feats
        )
        self.attn_layers = attn_layers

        self.dropout = nn.Dropout(do_)
        self.do_mvh = do_mvh

        self.density_head = density_head

    def forward(
        self, sampled_features, **kwargs
    ):  ### [n_, nv_, M, C1+C_pos_emb], [nv_==2, M==100000, C==1]
        ## invalid_features: invalid features to mask the features to let model learn without occluded points in the camera's view
        invalid_features = kwargs.get("invalid_features", None)
        assert isinstance(
            invalid_features, torch.Tensor
        ), f"__The {invalid_features} is not a torch.Tensor."
        assert (
            invalid_features.dtype == torch.bool
        ), f"The elements of the {invalid_features} are not boolean."
        # invalid_features = (invalid_features > 0.5)  ## round the each of values of 3D points simply by step function within the range of std_var [0,1]

        if (
            self.dropout.p != 0 and self.do_mvh
        ):  ## dropping out except first view feature map due to pgt_loss computation
            invalid_features = torch.concat(
                [
                    invalid_features[:, :1],
                    1 - self.dropout((1 - invalid_features[:, 1:].float())),
                ],
                dim=1,
            )
        elif self.dropout.p != 0 and not self.do_mvh:
            invalid_features = 1 - self.dropout(
                (1 - invalid_features.float())
            )  ## Note: after dropping out NeuRay, the values of elements are 2. ## randomly zero out the valid sampled_features' matrix. i.e. (1-invalid_features)
        elif self.dropout.p == 0 and not self.do_mvh:
            pass
        else:
            raise NotImplementedError(
                f"__unrecognized self.dropout: {self.dropout}, self.do_mvh: {self.do_mvh} condition"
            )

        if self.emb_encoder is not None:
            encoded_features = self.emb_encoder(
                sampled_features.flatten(0, -2)
            ).reshape(
                sampled_features.shape[:-1] + (-1,)
            )  ### [M*n==100000, nv_==6, 32]   ## Embedding to Transformer arch.
        else:
            encoded_features = sampled_features.flatten(0, -2).reshape(
                sampled_features.shape[:-1] + (-1,)
            )

        ## Process the embedded features with the Transformer
        view_independent_feature = self.independent_token_net(
            encoded_features, **kwargs
        ).to(encoded_features.device)

        # padding
        padded_features = torch.concat(
            [view_independent_feature, encoded_features], dim=1
        )  ### (B*n_pts, nv_+1, 103) == ([100000, 2+1, 103]): padding along the num_token dim. B*n_pts:=Batch size or number of data points being processed.
        padded_invalid = torch.concat(  ## Note: view_independent_feature is 1st index in Tensor (:,0,:)
            [
                torch.zeros(invalid_features.shape[0], 1, device="cuda"),
                invalid_features,
            ],
            dim=1,
        )

        transformed_features = self.attn_layers(
            src=padded_features, src_key_padding_mask=padded_invalid
        )[
            :, 0, :
        ]  # [n_pts, C] ##Note: remember the tensor shape is batch-first mode, sequence length is determined by the size of the first dimension of the input tensor
        ## ## first token refers to the readout token where it stores the feature information accumulated from the layers
        ## TODO: GeoNeRF: Identify readout token belongs to single ray: M should be divisable by nhead, so that it can feed into AE, Note: make sure sampled points are in valid in the mask. (camera frustum)
        ## !TODO: Q K^T V each element of which is a density field prediction for a corresponding 3D point.
        density_field = self.density_head(transformed_features)

        return density_field

    @classmethod
    def from_conf(cls, conf, d_in, d_out):
        d_enc = conf["embedding_encoder"].get("d_out", d_in)
        embedding_encoder = mlp.make_embedding_encoder(
            conf["embedding_encoder"], d_in, d_enc
        )
        attn_layers = make_attn_layers(conf["attn_layers"], d_enc)
        independent_token = make_independent_token(conf["independent_token"], d_enc)
        probing_layer = nn.Sequential(
            nn.Linear(d_enc, d_enc // 2), nn.ELU(), nn.Linear(d_enc // 2, d_out)
        )  ## This FFNet is how the final density field scalar element is inferred.
        return cls(
            embedding_encoder,
            independent_token,
            attn_layers,
            probing_layer,
            conf.get("dropout_views_rate", 0.0),
            conf.get("dropout_multiviewhead", False),
        )


class SimpleMultiViewHead(nn.Module):
    def __init__(
        self,
        mlp: nn.Module,
        do_: float = 0.0,
        do_mvh: bool = True,
    ):
        """Attention based feature aggregation module for multi-view density prediction.

        Args:
            emb_encoder (nn.Module, optional): small network to compress the per view feature vectors to a lower dimensional representation. Defaults to Optional[nn.Module].
            independent_feature_net (nn.Module, optional): module to generate the view independent token from the view dependent tokens. Defaults to nn.Module.
            attn_layers (nn.Module, optional): attention layers of the module responsible for information sharing between the views. Defaults to nn.Module.
            density_head (nn.Module, optional): final network layers to predict the density from the view independent token. Defaults to nn.Module.
            do_ (float, optional): probability of dropping out a single view for training. Defaults to 0.0.
            do_mvh (bool, optional): to decide whether the first view feature map should be droppout due to pgt_loss computation. Defaults to 0.0.
        """

        super(SimpleMultiViewHead, self).__init__()

        self.dropout = nn.Dropout(do_)
        self.do_mvh = do_mvh

        self.mlp = mlp

    def forward(
        self, sampled_features, **kwargs
    ):  ### [n_, nv_, M, C1+C_pos_emb], [nv_==2, M==100000, C==1]
        ## invalid_features: invalid features to mask the features to let model learn without occluded points in the camera's view
        invalid_features = kwargs.get("invalid_features", None)
        assert isinstance(
            invalid_features, torch.Tensor
        ), f"__The {invalid_features} is not a torch.Tensor."
        assert (
            invalid_features.dtype == torch.bool
        ), f"The elements of the {invalid_features} are not boolean."
        # invalid_features = (invalid_features > 0.5)  ## round the each of values of 3D points simply by step function within the range of std_var [0,1]

        if (
            self.dropout.p != 0 and self.do_mvh
        ):  ## dropping out except first view feature map due to pgt_loss computation
            invalid_features = torch.concat(
                [
                    invalid_features[:, :1],
                    1 - self.dropout((1 - invalid_features[:, 1:].float())),
                ],
                dim=1,
            )
        elif self.dropout.p != 0 and not self.do_mvh:
            invalid_features = 1 - self.dropout(
                (1 - invalid_features.float())
            )  ## Note: after dropping out NeuRay, the values of elements are 2. ## randomly zero out the valid sampled_features' matrix. i.e. (1-invalid_features)
        elif self.dropout.p == 0 and not self.do_mvh:
            pass
        else:
            raise NotImplementedError(
                f"__unrecognized self.dropout: {self.dropout}, self.do_mvh: {self.do_mvh} condition"
            )

        output = self.mlp(sampled_features)

        weights = torch.nn.functional.softmax(
            output[..., 0].masked_fill(invalid_features == 1, -1e9), dim=-1
        )

        density_field = torch.sum(output[..., 1:] * weights.unsqueeze(-1), dim=-2)

        return density_field

    @classmethod
    def from_conf(cls, conf, d_in, d_out):
        mlp = ResnetFC.from_conf(conf["mlp"]["args"], d_in, d_out + 1)
        return cls(
            mlp,
            conf.get("dropout_views_rate", 0.0),
            conf.get("dropout_multiviewhead", False),
        )


class MultiViewHead2(nn.Module):
    def __init__(
        self,
        mlp: nn.Module,
        do_: float = 0.0,
        do_mvh: bool = True,
        attn_layers: nn.Module | None = None,
        independent_token_net: BaseIndependentToken | None = None,
        mlp2: nn.Module | None = None,
    ):
        """Attention based feature aggregation module for multi-view density prediction.

        Args:
            emb_encoder (nn.Module, optional): small network to compress the per view feature vectors to a lower dimensional representation. Defaults to Optional[nn.Module].
            independent_feature_net (nn.Module, optional): module to generate the view independent token from the view dependent tokens. Defaults to nn.Module.
            attn_layers (nn.Module, optional): attention layers of the module responsible for information sharing between the views. Defaults to nn.Module.
            density_head (nn.Module, optional): final network layers to predict the density from the view independent token. Defaults to nn.Module.
            do_ (float, optional): probability of dropping out a single view for training. Defaults to 0.0.
            do_mvh (bool, optional): to decide whether the first view feature map should be droppout due to pgt_loss computation. Defaults to 0.0.
        """

        super(MultiViewHead2, self).__init__()

        self.dropout = nn.Dropout(do_)
        self.do_mvh = do_mvh

        self.mlp = mlp

        self.attn_layers = attn_layers
        self.independent_token = independent_token_net
        self.mlp2 = mlp2

    def forward(
        self, sampled_features, **kwargs
    ):  ### [n_, nv_, M, C1+C_pos_emb], [nv_==2, M==100000, C==1]
        ## invalid_features: invalid features to mask the features to let model learn without occluded points in the camera's view
        invalid_features = kwargs.get("invalid_features", None)
        assert isinstance(
            invalid_features, torch.Tensor
        ), f"__The {invalid_features} is not a torch.Tensor."
        assert (
            invalid_features.dtype == torch.bool
        ), f"The elements of the {invalid_features} are not boolean."
        # invalid_features = (invalid_features > 0.5)  ## round the each of values of 3D points simply by step function within the range of std_var [0,1]

        if (
            self.dropout.p != 0 and self.do_mvh
        ):  ## dropping out except first view feature map due to pgt_loss computation
            invalid_features = torch.concat(
                [
                    invalid_features[:, :1],
                    1 - self.dropout((1 - invalid_features[:, 1:].float())),
                ],
                dim=1,
            )
        elif self.dropout.p != 0 and not self.do_mvh:
            invalid_features = 1 - self.dropout(
                (1 - invalid_features.float())
            )  ## Note: after dropping out NeuRay, the values of elements are 2. ## randomly zero out the valid sampled_features' matrix. i.e. (1-invalid_features)
        elif self.dropout.p == 0 and not self.do_mvh:
            pass
        else:
            raise NotImplementedError(
                f"__unrecognized self.dropout: {self.dropout}, self.do_mvh: {self.do_mvh} condition"
            )

        encoded_features = self.mlp(sampled_features)

        if self.independent_token is not None:
            view_independent_feature = self.independent_token(
                encoded_features, **kwargs
            ).to(encoded_features.device)

            # padding
            encoded_features = torch.concat(
                [view_independent_feature, encoded_features], dim=1
            )  ### (B*n_pts, nv_+1, 103) == ([100000, 2+1, 103]): padding along the num_token dim. B*n_pts:=Batch size or number of data points being processed.
            invalid_features = torch.concat(  ## Note: view_independent_feature is 1st index in Tensor (:,0,:)
                [
                    torch.zeros(invalid_features.shape[0], 1, device="cuda"),
                    invalid_features,
                ],
                dim=1,
            )

        if self.attn_layers is not None:
            encoded_features = self.attn_layers(
                encoded_features, src_key_padding_mask=invalid_features
            )

        if self.independent_token is not None:
            if self.mlp2 is not None:
                return self.mlp2(encoded_features[..., 0, :])
            else:
                return encoded_features[..., 0, 1:]
        else:
            if self.mlp2 is not None:
                encoded_features = self.mlp2(encoded_features)

            weights = torch.nn.functional.softmax(
                encoded_features[..., 0].masked_fill(invalid_features == 1, -1e9),
                dim=-1,
            )
            return torch.sum(encoded_features[..., 1:] * weights.unsqueeze(-1), dim=-2)

        # return density_field

    @classmethod
    def from_conf(cls, conf, d_in, d_out):
        if conf["mlp2"] is not None:
            d_out_mlp = conf["mlp2"]["d_in"]
        else:
            d_out_mlp = d_out + 1
        mlp = ResnetFC.from_conf(conf["mlp"]["args"], d_in, d_out_mlp)

        if conf["attn_layers"] is not None:
            attn_layers = make_attn_layers(conf["attn_layers"], d_out_mlp)
        else:
            attn_layers = None

        if conf["independent_token"] is not None:
            independent_token = make_independent_token(
                conf["independent_token"], d_out_mlp
            )
        else:
            independent_token = None

        if conf["mlp2"] is not None:
            if conf["independent_token"] is not None:
                d_out_mlp2 = d_out
            else:
                d_out_mlp2 = d_out + 1
            mlp2 = ResnetFC.from_conf(conf["mlp2"]["args"], d_out_mlp, d_out_mlp2)
        else:
            mlp2 = None

        return cls(
            mlp,
            conf.get("dropout_views_rate", 0.0),
            conf.get("dropout_multiviewhead", False),
            attn_layers,
            independent_token,
            mlp2,
        )


class MultiViewHead3(nn.Module):
    def __init__(
        self,
        mlp: nn.Module,
        mlp2: nn.Module,
        do_: float = 0.0,
        do_mvh: bool = True,
    ):
        """Attention based feature aggregation module for multi-view density prediction.

        Args:
            emb_encoder (nn.Module, optional): small network to compress the per view feature vectors to a lower dimensional representation. Defaults to Optional[nn.Module].
            independent_feature_net (nn.Module, optional): module to generate the view independent token from the view dependent tokens. Defaults to nn.Module.
            attn_layers (nn.Module, optional): attention layers of the module responsible for information sharing between the views. Defaults to nn.Module.
            density_head (nn.Module, optional): final network layers to predict the density from the view independent token. Defaults to nn.Module.
            do_ (float, optional): probability of dropping out a single view for training. Defaults to 0.0.
            do_mvh (bool, optional): to decide whether the first view feature map should be droppout due to pgt_loss computation. Defaults to 0.0.
        """

        super(MultiViewHead3, self).__init__()

        self.dropout = nn.Dropout(do_)
        self.do_mvh = do_mvh

        self.mlp = mlp

        self.mlp2 = mlp2

    def forward(
        self, sampled_features, **kwargs
    ):  ### [n_, nv_, M, C1+C_pos_emb], [nv_==2, M==100000, C==1]
        ## invalid_features: invalid features to mask the features to let model learn without occluded points in the camera's view
        invalid_features = kwargs.get("invalid_features", None)
        assert isinstance(
            invalid_features, torch.Tensor
        ), f"__The {invalid_features} is not a torch.Tensor."
        assert (
            invalid_features.dtype == torch.bool
        ), f"The elements of the {invalid_features} are not boolean."
        # invalid_features = (invalid_features > 0.5)  ## round the each of values of 3D points simply by step function within the range of std_var [0,1]

        if (
            self.dropout.p != 0 and self.do_mvh
        ):  ## dropping out except first view feature map due to pgt_loss computation
            invalid_features = torch.concat(
                [
                    invalid_features[:, :1],
                    1 - self.dropout((1 - invalid_features[:, 1:].float())),
                ],
                dim=1,
            )
        elif self.dropout.p != 0 and not self.do_mvh:
            invalid_features = 1 - self.dropout(
                (1 - invalid_features.float())
            )  ## Note: after dropping out NeuRay, the values of elements are 2. ## randomly zero out the valid sampled_features' matrix. i.e. (1-invalid_features)
        elif self.dropout.p == 0 and not self.do_mvh:
            pass
        else:
            raise NotImplementedError(
                f"__unrecognized self.dropout: {self.dropout}, self.do_mvh: {self.do_mvh} condition"
            )

        encoded_features = self.mlp(sampled_features)

        weights = torch.nn.functional.softmax(
            encoded_features[..., 0].masked_fill(invalid_features == 1, -1e9), dim=-1
        )

        density_feature = torch.sum(
            encoded_features[..., 1:] * weights.unsqueeze(-1), dim=-2
        )

        return self.mlp2(density_feature)

    @classmethod
    def from_conf(cls, conf, d_in, d_out):
        mlp = ResnetFC.from_conf(conf["mlp"]["args"], d_in, conf["mlp2"]["d_in"] + 1)

        mlp2 = ResnetFC.from_conf(conf["mlp2"]["args"], conf["mlp2"]["d_in"], d_out)

        return cls(
            mlp,
            mlp2,
            conf.get("dropout_views_rate", 0.0),
            conf.get("dropout_multiviewhead", False),
        )