Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,480 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from typing import Optional
from torch import nn
import torch
# import torch_scatter
import torch.autograd.profiler as profiler
from scenedino.common import util
# Resnet Blocks
class ResnetBlockFC(nn.Module):
"""
Fully connected ResNet Block class.
Taken from DVR code.
:param size_in (int): input dimension
:param size_out (int): output dimension
:param size_h (int): hidden dimension
"""
def __init__(self, size_in, size_out=None, size_h=None, beta=0.0):
super().__init__()
# Attributes
if size_out is None:
size_out = size_in
if size_h is None:
size_h = min(size_in, size_out)
self.size_in = size_in
self.size_h = size_h
self.size_out = size_out
# Submodules
self.fc_0 = nn.Linear(size_in, size_h)
self.fc_1 = nn.Linear(size_h, size_out)
# Init
nn.init.constant_(self.fc_0.bias, 0.0)
nn.init.kaiming_normal_(self.fc_0.weight, a=0, mode="fan_in")
nn.init.constant_(self.fc_1.bias, 0.0)
nn.init.zeros_(self.fc_1.weight)
if beta > 0:
self.activation = nn.Softplus(beta=beta)
else:
self.activation = nn.ReLU()
if size_in == size_out:
self.shortcut = None
else:
self.shortcut = nn.Linear(size_in, size_out, bias=False)
nn.init.constant_(self.shortcut.bias, 0.0)
nn.init.kaiming_normal_(self.shortcut.weight, a=0, mode="fan_in")
def forward(self, x):
with profiler.record_function("resblock"):
net = self.fc_0(self.activation(x))
dx = self.fc_1(self.activation(net))
if self.shortcut is not None:
x_s = self.shortcut(x)
else:
x_s = x
return x_s + dx
class ResnetFC(nn.Module):
def __init__(
self,
d_in,
view_number: Optional[int] = None,
d_out=4,
n_blocks=5,
d_latent=0,
d_hidden=128,
beta=0.0,
combine_layer=1000,
combine_type="average",
use_spade=False,
):
"""
:param d_in input size
:param d_out output size
:param n_blocks number of Resnet blocks
:param d_latent latent size, added in each resnet block (0 = disable)
:param d_hidden hiddent dimension throughout network
:param beta softplus beta, 100 is reasonable; if <=0 uses ReLU activations instead
"""
super().__init__()
if d_in > 0:
self.lin_in = nn.Linear(d_in, d_hidden)
nn.init.constant_(self.lin_in.bias, 0.0)
nn.init.kaiming_normal_(self.lin_in.weight, a=0, mode="fan_in")
self.lin_out = nn.Linear(d_hidden, d_out)
nn.init.constant_(self.lin_out.bias, 0.0)
nn.init.kaiming_normal_(self.lin_out.weight, a=0, mode="fan_in")
self.n_blocks = n_blocks
self.d_latent = d_latent
self.d_in = d_in
self.view_number = view_number
self.d_out = d_out
self.d_hidden = d_hidden
self.combine_layer = combine_layer
self.combine_type = combine_type
self.use_spade = use_spade
self.blocks = nn.ModuleList(
[ResnetBlockFC(d_hidden, beta=beta) for i in range(n_blocks)]
)
if d_latent != 0:
n_lin_z = min(combine_layer, n_blocks)
self.lin_z = nn.ModuleList(
[nn.Linear(d_latent, d_hidden) for i in range(n_lin_z)]
)
for i in range(n_lin_z):
nn.init.constant_(self.lin_z[i].bias, 0.0)
nn.init.kaiming_normal_(self.lin_z[i].weight, a=0, mode="fan_in")
if self.use_spade:
self.scale_z = nn.ModuleList(
[nn.Linear(d_latent, d_hidden) for _ in range(n_lin_z)]
)
for i in range(n_lin_z):
nn.init.constant_(self.scale_z[i].bias, 0.0)
nn.init.kaiming_normal_(self.scale_z[i].weight, a=0, mode="fan_in")
if beta > 0:
self.activation = nn.Softplus(beta=beta)
else:
self.activation = nn.ReLU()
def forward(
self,
sampled_features,
combine_inner_dims=(1,),
combine_index=None,
dim_size=None,
**kwargs
):
"""
:param zx (..., d_latent + d_in)
:param combine_inner_dims Combining dimensions for use with multiview inputs.
Tensor will be reshaped to (-1, combine_inner_dims, ...) and reduced using combine_type
on dim 1, at combine_layer
"""
with profiler.record_function("resnetfc_infer"):
if self.view_number is not None:
zx = sampled_features[..., self.view_number, :]
else:
zx = sampled_features
assert zx.size(-1) == self.d_latent + self.d_in
if self.d_latent > 0:
z = zx[..., : self.d_latent]
x = zx[..., self.d_latent :]
else:
x = zx
if self.d_in > 0:
x = self.lin_in(x)
else:
x = torch.zeros(self.d_hidden, device=zx.device)
for blkid in range(self.n_blocks):
if blkid == self.combine_layer:
# The following implements camera frustum culling, requires torch_scatter
# if combine_index is not None:
# combine_type = (
# "mean"
# if self.combine_type == "average"
# else self.combine_type
# )
# if dim_size is not None:
# assert isinstance(dim_size, int)
# x = torch_scatter.scatter(
# x,
# combine_index,
# dim=0,
# dim_size=dim_size,
# reduce=combine_type,
# )
# else:
x = util.combine_interleaved(
x, combine_inner_dims, self.combine_type
)
if self.d_latent > 0 and blkid < self.combine_layer:
tz = self.lin_z[blkid](z)
if self.use_spade:
sz = self.scale_z[blkid](z)
x = sz * x + tz
else:
x = x + tz
x = self.blocks[blkid](x)
out = self.lin_out(self.activation(x))
# if kwargs["head_name"] == "singleviewhead": ## To recognize resnerfc.py that it only creates singleview feature map for pgt loss
# return out[:,0,:] ## Take 1st feature map as viz frame as evluation purpose mono camera
return out
@classmethod ## For foward_hook arguments matching: For multi view BTS model
# def from_conf(cls, conf, d_in, d_out): ## default
def from_conf(cls, conf, d_in, d_out, d_latent=0):
return cls(d_in=d_in, d_out=d_out, **conf)
@classmethod ## default for original resnetfc.py
def from_conf2(cls, conf, d_in, **kwargs):
# PyHocon construction
return cls(
d_in,
n_blocks=conf.get("n_blocks", 5),
d_hidden=conf.get("d_hidden", 128),
beta=conf.get("beta", 0.0),
combine_layer=conf.get("combine_layer", 1000),
combine_type=conf.get("combine_type", "average"), # average | max
use_spade=conf.get("use_spade", False),
**kwargs
)
# @classmethod ## For both multi and single view BTS model (integrated from both classmethod)
# def from_conf(cls, conf, d_in, d_out, **kwargs):
# # PyHocon construction
# return cls(
# d_out = d_out,
# d_in = d_in,
# n_blocks = conf.get("n_blocks", 5),
# d_hidden = conf.get("d_hidden", 128),
# beta = conf.get("beta", 0.0),
# combine_layer = conf.get("combine_layer", 1000),
# combine_type = conf.get("combine_type", "average"), # average | max
# use_spade = conf.get("use_spade", False),
# **kwargs
# )
|